Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_3_a4, author = {A. S. Zakharov}, title = {Embedding {Novikov--Poisson} algebras in {Novikov--Poisson} algebras of vector type}, journal = {Algebra i logika}, pages = {352--369}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a4/} }
A. S. Zakharov. Embedding Novikov--Poisson algebras in Novikov--Poisson algebras of vector type. Algebra i logika, Tome 52 (2013) no. 3, pp. 352-369. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a4/
[1] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz pril., 13:4 (1979), 13–30 | MR | Zbl
[2] A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, DAN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl
[3] E. I. Zelmanov, “Ob odnom klasse lokalnykh translyatsionno invariantnykh algebr Li”, DAN SSSR, 292:6 (1987), 1294–1297 | MR
[4] V. T. Filippov, “Ob odnom klasse prostykh neassotsiativnykh algebr”, Matem. zametki, 45:1 (1989), 101–105 | MR | Zbl
[5] J. M. Osborn, “Modules for Novikov algebras”, Second int. conf. algebra ded. mem. A. I. Shirshov, Proc. conf. algebra (August 20–25, 1991, Barnaul, Russia), Contemp. Math., 184, eds. L. A. Bokut' et al., Am. Math. Soc., Providence, RI, 1995, 327–338 | DOI | MR | Zbl
[6] J. M. Osborn, “Novikov algebras”, Nova J. Algebra Geom., 1:1 (1992), 1–13 | MR | Zbl
[7] J. M. Osborn, “Simple Novikov algebras with an idempotent”, Commun. Algebra, 20:9 (1992), 2729–2753 | DOI | MR | Zbl
[8] X. Xu, “Novikov–Poisson algebras”, J. Algebra, 190:2 (1997), 253–279 | DOI | MR | Zbl
[9] X. Xu, “On simple Novikov algebras and their irreducible modules”, J. Algebra, 185:3 (1996), 905–934 | DOI | MR | Zbl
[10] X. Xu, “Classification of simple Novikov algebra and their irreducible modules of characteristic 0”, J. Algebra, 246:2 (2001), 673–707 | DOI | MR | Zbl
[11] D. King, K. McCrimmon, “The Kantor construction of Jordan superalgebras”, Commun. Algebra, 20:1 (1992), 109–126 | DOI | MR | Zbl
[12] D. King, K. McCrimon, “The Kantor doubling process revisited”, Commun. Algebra, 23:1 (1995), 357–372 | DOI | MR | Zbl
[13] I. P. Shestakov, “Pervichnye alternativnye superalgebry proizvolnoi kharakteristiki”, Algebra i logika, 36:6 (1997), 675–716 | MR | Zbl
[14] I. P. Shestakov, “Prostye superalgebry tipa $(-1,1)$”, Algebra i logika, 37:6 (1998), 721–739 | MR | Zbl
[15] V. N. Zhelyabin, “Prostye spetsialnye iordanovy superalgebry s assotsiativnoi nil-poluprostoi chetnoi chastyu”, Algebra i logika, 41:3 (2002), 276–310 | MR | Zbl
[16] V. N. Zhelyabin, I. P. Shestakov, “Prostye spetsialnye iordanovy superalgebry s assotsiativnoi chetnoi chastyu”, Sib. matem. zh., 45:5 (2004), 1046–1072 | MR | Zbl
[17] V. N. Zhelyabin, “Differentsialnye algebry i prostye iordanovy superalgebry”, Matem. tr., 12:2 (2009), 41–51 | MR | Zbl
[18] V. N. Zhelyabin, “Differential algebras and simple Jordan superalgebras”, Sib. Adv. Math., 20:3 (2010), 223–230 | DOI
[19] V. N. Zhelyabin, “Novye primery prostykh iordanovykh superalgebr nad proizvolnym polem kharakteristiki nul”, Algebra i analiz, 24:4 (2012), 84–96 | MR
[20] A. S. Tikhov, “Algebry Novikova-Puassona i iordanovy superalgebry”, Problemy teoreticheskoi i prikladnoi matematiki, Tr. 37-oi region. molod. konf. (30 yanv. – 3 fevr. 2006 g.), In-t matem. mekh. UrO RAN, Ekaterinburg, 2006, 76–79
[21] V. N. Zhelyabin, A. S. Tikhov, “Algebry Novikova-Puassona i assotsiativnye kommutativnye differentsialnye algebry”, Algebra i logika, 47:2 (2008), 186–202 | MR | Zbl
[22] A. S. Zakharov, “Novikov–Poisson algebras and superalgebras of Jordan brackets”, Commun. Algebra (to appear)
[23] I. L. Kantor, “Iordanovy i lievy superalgebry, opredelennye algebroi Puassona”, Algebra i analiz, izd-vo TGU, Tomsk, 1989, 55–80 | MR
[24] I. P. Shestakov, “Superalgebry i kontrprimery”, Sib. matem. zh., 32:6 (1991), 187–196 | MR | Zbl
[25] K. McCrimmon, “Speciality and non-speciality of two Jordan superalgebras”, J. Algebra, 149:2 (1992), 326–351 | DOI | MR | Zbl