Complementing a subgroup of a hyperbolic group by a free factor
Algebra i logika, Tome 52 (2013) no. 3, pp. 332-351
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a hyperbolic group that is not almost cyclic and $H$ be its quasiconvex subgroup of infinite index. We find necessary and sufficient conditions of there being for $H$ a free subgroup $F$ of rank 2 in $G$ such that $F$ and $H$ generate a free product $F*H\subseteq G$. It is proved that $F*H$ is quasiconvex and that there exists an algorithm for verifying the conditions of the criterium given $G$ and $H$.
Keywords:
hyperbolic group, quasiconvex subgroup, free product.
@article{AL_2013_52_3_a3,
author = {F. A. Dudkin and K. S. Sviridov},
title = {Complementing a~subgroup of a~hyperbolic group by a~free factor},
journal = {Algebra i logika},
pages = {332--351},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/}
}
F. A. Dudkin; K. S. Sviridov. Complementing a subgroup of a hyperbolic group by a free factor. Algebra i logika, Tome 52 (2013) no. 3, pp. 332-351. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/