Complementing a~subgroup of a~hyperbolic group by a~free factor
Algebra i logika, Tome 52 (2013) no. 3, pp. 332-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a hyperbolic group that is not almost cyclic and $H$ be its quasiconvex subgroup of infinite index. We find necessary and sufficient conditions of there being for $H$ a free subgroup $F$ of rank 2 in $G$ such that $F$ and $H$ generate a free product $F*H\subseteq G$. It is proved that $F*H$ is quasiconvex and that there exists an algorithm for verifying the conditions of the criterium given $G$ and $H$.
Keywords: hyperbolic group, quasiconvex subgroup, free product.
@article{AL_2013_52_3_a3,
     author = {F. A. Dudkin and K. S. Sviridov},
     title = {Complementing a~subgroup of a~hyperbolic group by a~free factor},
     journal = {Algebra i logika},
     pages = {332--351},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/}
}
TY  - JOUR
AU  - F. A. Dudkin
AU  - K. S. Sviridov
TI  - Complementing a~subgroup of a~hyperbolic group by a~free factor
JO  - Algebra i logika
PY  - 2013
SP  - 332
EP  - 351
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/
LA  - ru
ID  - AL_2013_52_3_a3
ER  - 
%0 Journal Article
%A F. A. Dudkin
%A K. S. Sviridov
%T Complementing a~subgroup of a~hyperbolic group by a~free factor
%J Algebra i logika
%D 2013
%P 332-351
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/
%G ru
%F AL_2013_52_3_a3
F. A. Dudkin; K. S. Sviridov. Complementing a~subgroup of a~hyperbolic group by a~free factor. Algebra i logika, Tome 52 (2013) no. 3, pp. 332-351. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/

[1] G. N. Arzhantseva, “On quasiconvex subgroups of word hyperbolic groups”, Geom. Dedicata, 87:1–3 (2001), 191–208 | DOI | MR | Zbl

[2] M. Gromov, “Hyperbolic groups”, Essays in group theory, Publ., Math. Sci. Res. Inst., 8, ed. S. M. Gersten, 1987, 75–263 ; M. Gromov, Giperbolicheskie gruppy, In-t komp. issl., Izhevsk, 2002 | DOI | MR | Zbl | Zbl

[3] K. S. Sviridov, “Dopolnenie konechnoi podgruppy giperbolicheskoi gruppy svobodnym mnozhitelem”, Algebra i logika, 49:4 (2010), 520–554 | MR | Zbl

[4] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Mathem. Wiss., 319, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[5] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh. I”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 | MR | Zbl

[6] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh. II”, Izv. AN SSSR. Ser. matem., 32:2 (1968), 251–524 | MR | Zbl

[7] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh. III”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 709–731 | MR | Zbl

[8] V. Chaynikov, Actions of maximal growth of hyperbolic groups, Preprint, arXiv: 1201.1349

[9] E. Martinez-Pedroza, On quasiconvexity and relative hyperbolic structures, Preprint, arXiv: 0811.2384

[10] É. Ghys, P. de la Harpe (eds.), Sur les groupes hyperboliques d'aprés Mikhael Gromov, Progress Math., 83, Birkhaüser, Boston, MA, 1990 ; E. Gis, P. de lya Arp (red.), Giperbolicheskie gruppy po Mikhailu Gromovu, Mir, M., 1992 | MR | Zbl | MR

[11] E. L. Swenson, “Quasi-convex groups of isometries of negatively curved spaces”, Topology Appl., 110:1 (2001), 119–129 | DOI | MR | Zbl

[12] A. Minasyan, “Some properties of subsets of hyperbolic groups”, Commun. Algebra, 33:3 (2005), 909–935 | DOI | MR | Zbl

[13] O. V. Bogopolskii, V. N. Gerasimov, “Konechnye podgruppy giperbolicheskikh grupp”, Algebra i logika, 34:6 (1995), 619–622 | MR