Complementing a subgroup of a hyperbolic group by a free factor
Algebra i logika, Tome 52 (2013) no. 3, pp. 332-351

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a hyperbolic group that is not almost cyclic and $H$ be its quasiconvex subgroup of infinite index. We find necessary and sufficient conditions of there being for $H$ a free subgroup $F$ of rank 2 in $G$ such that $F$ and $H$ generate a free product $F*H\subseteq G$. It is proved that $F*H$ is quasiconvex and that there exists an algorithm for verifying the conditions of the criterium given $G$ and $H$.
Keywords: hyperbolic group, quasiconvex subgroup, free product.
@article{AL_2013_52_3_a3,
     author = {F. A. Dudkin and K. S. Sviridov},
     title = {Complementing a~subgroup of a~hyperbolic group by a~free factor},
     journal = {Algebra i logika},
     pages = {332--351},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/}
}
TY  - JOUR
AU  - F. A. Dudkin
AU  - K. S. Sviridov
TI  - Complementing a subgroup of a hyperbolic group by a free factor
JO  - Algebra i logika
PY  - 2013
SP  - 332
EP  - 351
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/
LA  - ru
ID  - AL_2013_52_3_a3
ER  - 
%0 Journal Article
%A F. A. Dudkin
%A K. S. Sviridov
%T Complementing a subgroup of a hyperbolic group by a free factor
%J Algebra i logika
%D 2013
%P 332-351
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/
%G ru
%F AL_2013_52_3_a3
F. A. Dudkin; K. S. Sviridov. Complementing a subgroup of a hyperbolic group by a free factor. Algebra i logika, Tome 52 (2013) no. 3, pp. 332-351. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a3/