Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_3_a2, author = {S. A. Drobyshevich}, title = {Composition of an intuitionistic negation and negative modalities as a~necessity operator}, journal = {Algebra i logika}, pages = {305--331}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a2/} }
S. A. Drobyshevich. Composition of an intuitionistic negation and negative modalities as a~necessity operator. Algebra i logika, Tome 52 (2013) no. 3, pp. 305-331. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a2/
[1] P. Cabalar, S. P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of knowledge representation and reasoning, Proc. 10th Int. Conf. (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36
[2] K. Dosen, “Negation as a modal operator”, Rep. Math. Logic, 20 (1986), 15–28 | MR | Zbl
[3] V. H. Sotirov, “Modal theories with intuitionistic logic”, Proc. Conf. Math. Logic (Sofia, 1980), Bulgarian Acad. Sci., 1984, 139–171 | MR
[4] M. Božić, K. Dožen, “Models for normal intuitionistic logics”, Stud. log., 43 (1984), 217–245 | DOI | MR
[5] K. Dosen, “Negative modal operators in intuitionistic logic”, Publ. Inst. Math., Nouv. Ser., 35:49 (1984), 3–14 | MR | Zbl
[6] D. Vakarelov, “Consistency, completeness and negation”, Paraconsistent logics, Essays on the inconsistent, Analytica, eds. G. Priest, R. Routley, J. Norman, Philosophia Verlag, München etc., 1989, 328–363 | MR
[7] D. Vakarelov, “The non-classical negation in the works of Helena Rasiowa and their impact on the theory of negation”, Stud. Log., 84:1 (2006), 105–127 | DOI | MR | Zbl
[8] R. Routley, V. Routley, “The semantics of first degree entailment”, Nous, 6 (1972), 335–359 | DOI | MR
[9] S. P. Odintsov, “Combining intuitionistic connectives and Routley negation”, Sib. Electr. Math. Rep., 7 (2010), 21–41 | MR
[10] S. A. Drobyshevich, “Gibridnoe ischislenie dlya logiki $N^*$: eë konechnaya approksimiruemost i razreshimost”, Algebra i logika, 50:3 (2011), 351–367 | MR | Zbl
[11] S. P. Odintsov, H. Wansing, “Inconsistency-tolerant description logic. II: A tableau algorithm for $\mathcal{CALC}^\mathrm C$”, J. Appl. Log., 6:3 (2008), 343–360 | DOI | MR | Zbl
[12] R. Dyckhoff, “Contraction-free sequent calculi for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 795–807 | DOI | MR | Zbl