Composition of an intuitionistic negation and negative modalities as a~necessity operator
Algebra i logika, Tome 52 (2013) no. 3, pp. 305-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main objective of the paper is to axiomatize operators $-\lnot$ and $-\square'$ in logics $N^*$ and $HK\square'$, respectively. The result is formulated in terms of normal extensions $HKN\square'$ and $HKNR$ of $HK\square$, which are embedded in corresponding logics via a natural translation. In addition, for the logic $HKNR$, the finite model property and decidability are established by using a hybrid calculus.
Keywords: intuitionistic negation, negative modalities, necessity operator, finite model property, decidability.
@article{AL_2013_52_3_a2,
     author = {S. A. Drobyshevich},
     title = {Composition of an intuitionistic negation and negative modalities as a~necessity operator},
     journal = {Algebra i logika},
     pages = {305--331},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a2/}
}
TY  - JOUR
AU  - S. A. Drobyshevich
TI  - Composition of an intuitionistic negation and negative modalities as a~necessity operator
JO  - Algebra i logika
PY  - 2013
SP  - 305
EP  - 331
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_3_a2/
LA  - ru
ID  - AL_2013_52_3_a2
ER  - 
%0 Journal Article
%A S. A. Drobyshevich
%T Composition of an intuitionistic negation and negative modalities as a~necessity operator
%J Algebra i logika
%D 2013
%P 305-331
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_3_a2/
%G ru
%F AL_2013_52_3_a2
S. A. Drobyshevich. Composition of an intuitionistic negation and negative modalities as a~necessity operator. Algebra i logika, Tome 52 (2013) no. 3, pp. 305-331. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a2/

[1] P. Cabalar, S. P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of knowledge representation and reasoning, Proc. 10th Int. Conf. (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36

[2] K. Dosen, “Negation as a modal operator”, Rep. Math. Logic, 20 (1986), 15–28 | MR | Zbl

[3] V. H. Sotirov, “Modal theories with intuitionistic logic”, Proc. Conf. Math. Logic (Sofia, 1980), Bulgarian Acad. Sci., 1984, 139–171 | MR

[4] M. Božić, K. Dožen, “Models for normal intuitionistic logics”, Stud. log., 43 (1984), 217–245 | DOI | MR

[5] K. Dosen, “Negative modal operators in intuitionistic logic”, Publ. Inst. Math., Nouv. Ser., 35:49 (1984), 3–14 | MR | Zbl

[6] D. Vakarelov, “Consistency, completeness and negation”, Paraconsistent logics, Essays on the inconsistent, Analytica, eds. G. Priest, R. Routley, J. Norman, Philosophia Verlag, München etc., 1989, 328–363 | MR

[7] D. Vakarelov, “The non-classical negation in the works of Helena Rasiowa and their impact on the theory of negation”, Stud. Log., 84:1 (2006), 105–127 | DOI | MR | Zbl

[8] R. Routley, V. Routley, “The semantics of first degree entailment”, Nous, 6 (1972), 335–359 | DOI | MR

[9] S. P. Odintsov, “Combining intuitionistic connectives and Routley negation”, Sib. Electr. Math. Rep., 7 (2010), 21–41 | MR

[10] S. A. Drobyshevich, “Gibridnoe ischislenie dlya logiki $N^*$: eë konechnaya approksimiruemost i razreshimost”, Algebra i logika, 50:3 (2011), 351–367 | MR | Zbl

[11] S. P. Odintsov, H. Wansing, “Inconsistency-tolerant description logic. II: A tableau algorithm for $\mathcal{CALC}^\mathrm C$”, J. Appl. Log., 6:3 (2008), 343–360 | DOI | MR | Zbl

[12] R. Dyckhoff, “Contraction-free sequent calculi for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 795–807 | DOI | MR | Zbl