The number of $P$-expansions of Abelian groups
Algebra i logika, Tome 52 (2013) no. 2, pp. 255-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2013_52_2_a7,
     author = {E. A. Palyutin},
     title = {The number of $P$-expansions of {Abelian} groups},
     journal = {Algebra i logika},
     pages = {255--258},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a7/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - The number of $P$-expansions of Abelian groups
JO  - Algebra i logika
PY  - 2013
SP  - 255
EP  - 258
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a7/
LA  - ru
ID  - AL_2013_52_2_a7
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T The number of $P$-expansions of Abelian groups
%J Algebra i logika
%D 2013
%P 255-258
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a7/
%G ru
%F AL_2013_52_2_a7
E. A. Palyutin. The number of $P$-expansions of Abelian groups. Algebra i logika, Tome 52 (2013) no. 2, pp. 255-258. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a7/

[1] T. A. Nurmagambetov, “$P$-stabilnost polnykh teorii abelevykh grupp”, XI Mezhrespubl. konf. po matem. logike, Tez. soobschenii, izd-vo KGU, Kazan, 1992, 106

[2] M. A. Rusaleev, “Obobschennaya stabilnost abelevykh grupp bez krucheniya”, Algebra i logika, 50:2 (2011), 231–245 | MR | Zbl

[3] E. A. Palyutin, “Obobschenno stabilnye abelevy gruppy”, Mezhd. konf. Maltsevskie chteniya, Tez. dokl., In-t matem. SO RAN, Novosibirsk, 2011, 81

[4] W. Szmielew, “Elementary properties of abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl

[5] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., izd-vo “Fizmatlit”, M., 2011