Topologizability of countable equationally Noetherian algebras
Algebra i logika, Tome 52 (2013) no. 2, pp. 155-171

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an arbitrary equationally Noetherian countable algebra $\mathcal A=\langle A,L_A\rangle$ in a countable language is topologizable. In addition, it is shown that certain of the known statements on topologizability follow as a consequence.
Keywords: equationally Noetherian algebra, topologizable algebra.
@article{AL_2013_52_2_a2,
     author = {M. V. Kotov},
     title = {Topologizability of countable equationally {Noetherian} algebras},
     journal = {Algebra i logika},
     pages = {155--171},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a2/}
}
TY  - JOUR
AU  - M. V. Kotov
TI  - Topologizability of countable equationally Noetherian algebras
JO  - Algebra i logika
PY  - 2013
SP  - 155
EP  - 171
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a2/
LA  - ru
ID  - AL_2013_52_2_a2
ER  - 
%0 Journal Article
%A M. V. Kotov
%T Topologizability of countable equationally Noetherian algebras
%J Algebra i logika
%D 2013
%P 155-171
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a2/
%G ru
%F AL_2013_52_2_a2
M. V. Kotov. Topologizability of countable equationally Noetherian algebras. Algebra i logika, Tome 52 (2013) no. 2, pp. 155-171. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a2/