Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism
Algebra i logika, Tome 52 (2013) no. 2, pp. 131-144

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every computably enumerable Turing degree is a degree of categoricity of some computable Boolean algebra with a distinguished automorphism. We construct an example of a computably categorical Boolean algebra with a distinguished automorphism, having a set of atoms in a given computably enumerable Turing degree.
Keywords: Boolean algebra with distinguished automorphism, computable categoricity, categoricity spectrum, degree of categoricity.
@article{AL_2013_52_2_a0,
     author = {N. A. Bazhenov and R. R. Tukhbatullina},
     title = {Computable categoricity of the {Boolean} algebra $\mathfrak B(\omega)$ with a~distinguished automorphism},
     journal = {Algebra i logika},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/}
}
TY  - JOUR
AU  - N. A. Bazhenov
AU  - R. R. Tukhbatullina
TI  - Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism
JO  - Algebra i logika
PY  - 2013
SP  - 131
EP  - 144
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/
LA  - ru
ID  - AL_2013_52_2_a0
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%A R. R. Tukhbatullina
%T Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism
%J Algebra i logika
%D 2013
%P 131-144
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/
%G ru
%F AL_2013_52_2_a0
N. A. Bazhenov; R. R. Tukhbatullina. Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism. Algebra i logika, Tome 52 (2013) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/