Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
Algebra i logika, Tome 52 (2013) no. 2, pp. 131-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every computably enumerable Turing degree is a degree of categoricity of some computable Boolean algebra with a distinguished automorphism. We construct an example of a computably categorical Boolean algebra with a distinguished automorphism, having a set of atoms in a given computably enumerable Turing degree.
Keywords: Boolean algebra with distinguished automorphism, computable categoricity, categoricity spectrum, degree of categoricity.
@article{AL_2013_52_2_a0,
     author = {N. A. Bazhenov and R. R. Tukhbatullina},
     title = {Computable categoricity of the {Boolean} algebra $\mathfrak B(\omega)$ with a~distinguished automorphism},
     journal = {Algebra i logika},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/}
}
TY  - JOUR
AU  - N. A. Bazhenov
AU  - R. R. Tukhbatullina
TI  - Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
JO  - Algebra i logika
PY  - 2013
SP  - 131
EP  - 144
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/
LA  - ru
ID  - AL_2013_52_2_a0
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%A R. R. Tukhbatullina
%T Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
%J Algebra i logika
%D 2013
%P 131-144
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/
%G ru
%F AL_2013_52_2_a0
N. A. Bazhenov; R. R. Tukhbatullina. Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism. Algebra i logika, Tome 52 (2013) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a0/

[1] A. Fröhlich, J. Shepherdson, “Effective procedures in field theory”, Philos. Trans. Roy. Soc. London, Ser. A, 248:950 (1956), 407–432 | DOI | MR

[2] A. I. Maltsev, “Konstruktivnye algebry. 1”, UMN, 16:3 (1961), 3–60 | MR | Zbl

[3] S. S. Goncharov, V. S. Harizanov, J. F. Knight, C. McCoy, R. Miller, R. Solomon, “Enumerations in computable structure theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl

[4] J. Chisholm, E. B. Fokina, S. S. Goncharov, V. S. Harizanov, J. F. Knight, S. Quinn, “Intrinsic bounds on complexity and definability at limit levels”, J. Symb. Log., 74:3 (2009), 1047–1060 | DOI | MR | Zbl

[5] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl

[6] B. F. Csima, J. N. Y. Franklin, R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy”, Notre Dame J. Formal Logic, 54:2 (2013), 215–231 | DOI | MR | Zbl

[7] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[8] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl

[9] C. McCoy, “$\Delta^0_2$-categoricity in Boolean algebras and linear orderings”, Ann. Pure Appl. Logic, 119:1–3 (2003), 85–120 | DOI | MR | Zbl

[10] Ch. F. D. Mak-Koi, “O $\Delta^0_3$-kategorichnosti dlya lineinykh poryadkov i bulevykh algebr”, Algebra i logika, 41:5 (2002), 531–552 | MR | Zbl

[11] K. Harris, Categoricity in Boolean algebras (to appear)

[12] P. E. Alaev, “Avtoustoichivye $I$-algebry”, Algebra i logika, 43:5 (2004), 511–550 | MR | Zbl

[13] N. A. Bazhenov, “O $\Delta^0_2$-kategorichnosti bulevykh algebr”, Vestnik NGU. Ser. matem., mekh., inform. (to appear)

[14] R. R. Tukhbatullina, “Avtoustoichivost bulevoi algebry $\mathfrak B_\omega$, obogaschennoi avtomorfizmom”, Vestnik NGU. Ser. matem., mekh., inform., 10:3 (2010), 110–118 | Zbl

[15] N. A. Bazhenov, R. R. Tukhbatullina, “Konstruktiviziruemost bulevoi algebry $\mathfrak B(\omega)$ s vydelennym avtomorfizmom”, Algebra i logika, 51:5 (2012), 579–607 | MR | Zbl

[16] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[17] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[18] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl