Recognizability of groups $G_2(q)$ by spectrum
Algebra i logika, Tome 52 (2013) no. 1, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Two groups are said to be isospectral if they have equal sets of element orders. It is proved that for every finite simple exceptional group $L=G_2(q)$ of Lie type, any finite group $G$ isospectral to $L$ must be isomorphic to $L$.
Keywords: finite simple group, exceptional group of Lie type, element order, spectrum of group, recognition by spectrum.
@article{AL_2013_52_1_a0,
     author = {A. V. Vasil'ev and A. M. Staroletov},
     title = {Recognizability of groups $G_2(q)$ by spectrum},
     journal = {Algebra i logika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a0/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
AU  - A. M. Staroletov
TI  - Recognizability of groups $G_2(q)$ by spectrum
JO  - Algebra i logika
PY  - 2013
SP  - 3
EP  - 21
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a0/
LA  - ru
ID  - AL_2013_52_1_a0
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%A A. M. Staroletov
%T Recognizability of groups $G_2(q)$ by spectrum
%J Algebra i logika
%D 2013
%P 3-21
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a0/
%G ru
%F AL_2013_52_1_a0
A. V. Vasil'ev; A. M. Staroletov. Recognizability of groups $G_2(q)$ by spectrum. Algebra i logika, Tome 52 (2013) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a0/