Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2012_51_6_a4, author = {A. G. Pinus}, title = {Geometric and conditional geometric equivalences of algebras}, journal = {Algebra i logika}, pages = {766--771}, publisher = {mathdoc}, volume = {51}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2012_51_6_a4/} }
A. G. Pinus. Geometric and conditional geometric equivalences of algebras. Algebra i logika, Tome 51 (2012) no. 6, pp. 766-771. http://geodesic.mathdoc.fr/item/AL_2012_51_6_a4/
[1] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR
[2] B. I. Plotkin, “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl
[3] B. Plotkin, “Some results and problems related to universal algebraic geometry”, Int. J. Algebra Comput., 17:5/6 (2007), 1133–1164 | DOI | MR | Zbl
[4] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione, Papers of the conf. in honour of A.Gaglione's 60th birthday (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | DOI | MR | Zbl
[6] A. G. Pinus, “Geometricheskie shkaly mnogoobrazii i kvazitozhdestva”, Matem. tr., 12:2 (2009), 160–169 | MR | Zbl
[7] A. G. Pinus, “Novye algebraicheskie invarianty dlya formulnykh podmnozhestv universalnykh algebr”, Algebra i logika, 50:2 (2011), 209–230 | MR | Zbl
[8] A. G. Pinus, Boolean constructions in universal algebra, Kluwer Acad. Publ., Dordrecht–Boston–London, 1993 | MR | Zbl
[9] A. G. Pinus, “Neyavno ekvivalentnye universalnye algebry”, Sib. matem. zh., 53:5 (2012), 1077–1090 | Zbl