Automorphisms of Boolean algebras definable by fixed elements
Algebra i logika, Tome 51 (2012) no. 5, pp. 623-637.

Voir la notice de l'article provenant de la source Math-Net.Ru

Enriched Boolean algebras are studied. We give an answer to the question asking under which conditions, given a subalgebra of a Boolean algebra, we can uniquely reconstruct an automorphism for which the given subalgebra is a subalgebra of fixed elements. Also we furnish a complete description of subalgebras of Boolean algebras that are fixed subalgebras of automorphisms definable by fixed elements. It is proved that an automorphism of a Boolean algebra is defined by fixed elements iff it is an involution. Subalgebras of fixed elements of automorphisms of atomic and superatomic Boolean algebras are examined. It is shown that an automorphism of a distributive lattice is defined by fixed elements iff it is an involution, and that this is untrue of finite modular lattices.
Keywords: Boolean algebra, Boolean algebras with distinguished subalgebra, fixed elements of automorphism, involution, distributive lattice.
Mots-clés : automorphism
@article{AL_2012_51_5_a3,
     author = {D. E. Pal'chunov and A. V. Trofimov},
     title = {Automorphisms of {Boolean} algebras definable by fixed elements},
     journal = {Algebra i logika},
     pages = {623--637},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_5_a3/}
}
TY  - JOUR
AU  - D. E. Pal'chunov
AU  - A. V. Trofimov
TI  - Automorphisms of Boolean algebras definable by fixed elements
JO  - Algebra i logika
PY  - 2012
SP  - 623
EP  - 637
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_5_a3/
LA  - ru
ID  - AL_2012_51_5_a3
ER  - 
%0 Journal Article
%A D. E. Pal'chunov
%A A. V. Trofimov
%T Automorphisms of Boolean algebras definable by fixed elements
%J Algebra i logika
%D 2012
%P 623-637
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_5_a3/
%G ru
%F AL_2012_51_5_a3
D. E. Pal'chunov; A. V. Trofimov. Automorphisms of Boolean algebras definable by fixed elements. Algebra i logika, Tome 51 (2012) no. 5, pp. 623-637. http://geodesic.mathdoc.fr/item/AL_2012_51_5_a3/

[1] M. Rabin, “The theory of Boolean algebras with a distinguished subalgebra is undecidable”, Ann. Sci. Univ. Clermont Math., 60:13 (1976), 129–134 | MR

[2] Yu. L. Ershov, “Razreshimost elementarnoi teorii distributivnykh struktur s otnositelnymi dopolneniyami i teorii filtrov”, Algebra i logika, 3:3 (1964), 17–38 | MR | Zbl

[3] V. I. Martyanov, “Nerazreshimost teorii bulevykh algebr s avtomorfizmom”, Sib. matem. zh., 23:3 (1982), 147–154 | MR

[4] Z. A. Dulatova, “Rasshirennye teorii bulevykh algebr”, Sib. matem. zh., 25:1 (1984), 201–204 | MR | Zbl

[5] D. E. Palchunov, “O nerazreshimosti teorii bulevykh algebr s vydelennymi idealami”, Algebra i logika, 25:3 (1986), 326–346 | MR

[6] D. E. Pal'chunov, “Countably-categorical Boolean algebras with distinguished ideals”, Studia Logica, 46:2 (1987), 121–135 | DOI | MR

[7] D. E. Palchunov, “Konechno-aksiomatiziruemye bulevy algebry s vydelennymi idealami”, Algebra i logika, 26:4 (1987), 435–455 | MR

[8] D. E. Palchunov, “Algebra Lidenbauma–Tarskogo klassa bulevykh algebr s vydelennymi idealami”, Algebra i logika, 34:1 (1995), 88–116 | MR

[9] D. E. Palchunov, A. V. Trofimov, “Lokalnye i neischezayuschie superatomnye bulevy algebry s vydelennoi plotnoi podalgebroi”, Algebra i logika, 50:6 (2011), 822–847 | MR

[10] D. E. Palchunov, A. V. Trofimov, “Avtomorfizmy bulevykh algebr, opredelyaemye nepodvizhnymi elementami”, DAN, 443:1 (2012), 14–15 | MR

[11] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR