Dominions in Abelian subgroups of metabelian groups
Algebra i logika, Tome 51 (2012) no. 5, pp. 608-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a suitable free Abelian group of finite rank is not absolutely closed in the class $\mathcal A^2$ of metabelian groups. A condition is specified under which a torsion-free Abelian group is not absolutely closed in $\mathcal A^2$. Also we gain insight into the question when the dominion in $\mathcal A^2$ of the additive group of rational numbers coincides with this subgroup.
Keywords: metabelian group, Abelian subgroup, dominion.
@article{AL_2012_51_5_a2,
     author = {A. I. Budkin},
     title = {Dominions in {Abelian} subgroups of metabelian groups},
     journal = {Algebra i logika},
     pages = {608--622},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_5_a2/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Dominions in Abelian subgroups of metabelian groups
JO  - Algebra i logika
PY  - 2012
SP  - 608
EP  - 622
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_5_a2/
LA  - ru
ID  - AL_2012_51_5_a2
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Dominions in Abelian subgroups of metabelian groups
%J Algebra i logika
%D 2012
%P 608-622
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_5_a2/
%G ru
%F AL_2012_51_5_a2
A. I. Budkin. Dominions in Abelian subgroups of metabelian groups. Algebra i logika, Tome 51 (2012) no. 5, pp. 608-622. http://geodesic.mathdoc.fr/item/AL_2012_51_5_a2/

[1] J. R. Isbell, “Epimorphisms and dominions”, Proc. conf. categor. algebra (La Jolla, 1965), Lange and Springer, New York, 1966 | MR

[2] P. M. Higgins, “Epimorphisms and amalgams”, Colloq. Math., 56:1 (1988), 1–17 | MR | Zbl

[3] A. I. Budkin, “Dominions in quasivarieties of universal algebras”, Stud. Log., 78:1–2 (2004), 107–127 | DOI | MR | Zbl

[4] A. I. Budkin, “Reshëtki dominionov universalnykh algebr”, Algebra i logika, 46:1 (2007), 26–45 | MR | Zbl

[5] A. I. Budkin, “Dominiony universalnykh algebr i proektivnye svoistva”, Algebra i logika, 47:5 (2008), 541–557 | MR | Zbl

[6] S. A. Shakhova, “O reshëtkakh dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 44:2 (2005), 238–251 | MR | Zbl

[7] S. A. Shakhova, “Usloviya distributivnosti reshëtok dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 45:4 (2006), 484–499 | MR | Zbl

[8] S. A. Shakhova, “Ob odnom svoistve operatsii peresecheniya v reshetkakh dominionov kvazimnogoobrazii abelevykh grupp”, Izvestiya Alt. gos. un-ta, 2010, no. 1-1(65), 41–43

[9] S. A. Shakhova, “O suschestvovanii reshetki dominionov v kvazimnogoobraziyakh abelevykh grupp”, Izvestiya Alt. gos. un-ta, 2011, no. 1-1(69), 31–33

[10] A. Magidin, “Dominions in varieties of nilpotent groups”, Commun. Algebra, 28:3 (2000), 1241–1270 | DOI | MR | Zbl

[11] A. Magidin, “Absolutely closed nil-2 groups”, Algebra Univers., 42:1–2 (1999), 61–77 | DOI | MR | Zbl

[12] A. I. Budkin, “O dominionakh v kvazimnogoobraziyakh metabelevykh grupp”, Sib. matem. zh., 51:3 (2010), 498–505 | MR | Zbl

[13] A. I. Budkin, “O dominione polnoi podgruppy metabelevoi gruppy”, Izvestiya Alt. gos. un-ta, 2010, no. 1-2(65), 15–19

[14] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002

[15] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[16] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[17] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[18] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[19] P. Hall, “Finiteness conditions for soluble groups”, Proc. Lond. Math. Soc., III Ser., 4:16 (1954), 419–436 | DOI | MR | Zbl

[20] A. I. Budkin, “Aksiomaticheskii rang kvazimnogoobraziya, soderzhaschego svobodnuyu razreshimuyu gruppu”, Matem. sb., 112(154):4(8) (1980), 647–655 | MR | Zbl

[21] A. I. Budkin, $Q$-teorii konechno porozhdënnykh grupp. Kvazitozhdestva, kvazimnogoobraziya, LAP LAMBERT Academic Publishing GmbH Co. KG, Saarbrücken, Germany, 2012