Constructivizability of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
Algebra i logika, Tome 51 (2012) no. 5, pp. 579-607.

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructivizability criterion for the Boolean algebra $\mathfrak B(\omega)$ with a distinguished ideal is given. As a consequence of the criterion, combined with a result due to I. Kalimullin, B. Khoussainov, and A. Melnikov, we construct a Boolean algebra with a distinguished ideal whose degree spectrum contains every nonzero Turing $\Delta^0_2$-degree but does not contain $0$.
Keywords: Boolean algebra with distinguished automorphism, constructivizability, degree spectra of structures.
@article{AL_2012_51_5_a1,
     author = {N. A. Bazhenov and R. R. Tukhbatullina},
     title = {Constructivizability of the {Boolean} algebra $\mathfrak B(\omega)$ with a~distinguished automorphism},
     journal = {Algebra i logika},
     pages = {579--607},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_5_a1/}
}
TY  - JOUR
AU  - N. A. Bazhenov
AU  - R. R. Tukhbatullina
TI  - Constructivizability of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
JO  - Algebra i logika
PY  - 2012
SP  - 579
EP  - 607
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_5_a1/
LA  - ru
ID  - AL_2012_51_5_a1
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%A R. R. Tukhbatullina
%T Constructivizability of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
%J Algebra i logika
%D 2012
%P 579-607
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_5_a1/
%G ru
%F AL_2012_51_5_a1
N. A. Bazhenov; R. R. Tukhbatullina. Constructivizability of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism. Algebra i logika, Tome 51 (2012) no. 5, pp. 579-607. http://geodesic.mathdoc.fr/item/AL_2012_51_5_a1/

[1] S. S. Goncharov, “Konstruktiviziruemost superatomnykh bulevykh algebr”, Algebra i logika, 12:1 (1973), 31–40 | Zbl

[2] N. T. Kogabaev, “Universalnaya numeratsiya konstruktivnykh $I$-algebr”, Algebra i logika, 40:5 (2001), 561–579 | MR | Zbl

[3] R. R. Tukhbatullina, “Avtoustoichivost bulevoi algebry $\mathfrak B_\omega$, obogaschennoi avtomorfizmom”, Vestnik NGU. Ser. matem., mekh., inform., 10:3 (2010), 110–118 | Zbl

[4] S. S. Goncharov, Schëtnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[5] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[6] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[7] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, “Effective categoricity of equivalence structures”, Ann. Pure Appl. Logic, 141:1–2 (2006), 61–78 | DOI | MR | Zbl

[8] R. G. Downey, A. M. Kach, D. Turetsky, “Limitwise monotonic functions and their applications”, Proc. of the Eleventh Asian Logic Conf., 2011, 59–85 | MR

[9] A. M. Kach, D. Turetsky, “Limitwise monotonic functions, sets and degrees on computable domains”, J. Symb. Log., 75:1 (2010), 131–154 | DOI | MR | Zbl

[10] K. Harris, “$\eta$-Representation of sets and degrees”, J. Symb. Log., 73:4 (2008), 1097–1121 | DOI | MR | Zbl

[11] A. M. Kach, “Computable shuffle sums of ordinals”, Arch. Math. Logic, 47:3 (2008), 211–219 | DOI | MR | Zbl

[12] I. Kalimullin, B. Khoussainov, A. Melnikov, “Limitwise monotonic sequences and degree spectra of structures”, Proc. Amer. Math. Soc. (to appear)

[13] J. F. Knight, “Degrees coded in jumps of orderings”, J. Symb. Log., 51:4 (1986), 1034–1042 | DOI | MR | Zbl