Groups with relatively small normalizers of primary subgroups
Algebra i logika, Tome 51 (2012) no. 5, pp. 565-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of finite groups $G$ is studied in which for every primary subgroup $A$, almost all of its automorphisms induced by elements of $G$ are inner. Namely, for any such subgroup, the index $|N(A):A\cdot C(A)|$ divides some prime number. These groups are called $NSP$-groups.
Keywords: finite group, inner automorphism
Mots-clés : $NSP$-group.
@article{AL_2012_51_5_a0,
     author = {V. A. Antonov},
     title = {Groups with relatively small normalizers of primary subgroups},
     journal = {Algebra i logika},
     pages = {565--578},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_5_a0/}
}
TY  - JOUR
AU  - V. A. Antonov
TI  - Groups with relatively small normalizers of primary subgroups
JO  - Algebra i logika
PY  - 2012
SP  - 565
EP  - 578
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_5_a0/
LA  - ru
ID  - AL_2012_51_5_a0
ER  - 
%0 Journal Article
%A V. A. Antonov
%T Groups with relatively small normalizers of primary subgroups
%J Algebra i logika
%D 2012
%P 565-578
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_5_a0/
%G ru
%F AL_2012_51_5_a0
V. A. Antonov. Groups with relatively small normalizers of primary subgroups. Algebra i logika, Tome 51 (2012) no. 5, pp. 565-578. http://geodesic.mathdoc.fr/item/AL_2012_51_5_a0/

[1] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[2] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, izd. 4-e, pererab. i dopoln., Nauka, M., 1996 | MR | Zbl

[3] V. V. Kabanov, A. S. Kondratev, Silovskie 2-podgruppy konechnykh grupp (obzor), In-t mat. i mekh. UNTs AN SSSR, Sverdlovsk, 1979

[4] S. A. Syskin, “Abstraktnye svoistva prostykh sporadicheskikh grupp”, UMN, 35:5(215) (1980), 181–212 | MR | Zbl

[5] R. W. Carter, Simple groups of Lie type, Pure and Appl. Math., 28, J. Wiley Sons, London a.o., 1972 | MR

[6] B. Huppert, Endliche Gruppen, Nachdr. d. 1. Aufl., v. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a.o., 1967 | DOI | MR | Zbl