Semilattices of definable subalgebras.~II
Algebra i logika, Tome 51 (2012) no. 2, pp. 276-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

In studying derived objects on universal algebras, such as automorphisms, endomorphisms, congruences, subalgebras, etc., we are naturally interested in those that can be defined by the means of the universal algebras themselves (i.e., are definable in one sense or another) – in particular in what part of all relevant derived objects is constituted by these. It is proved that for any algebraic lattice L and any of its $0$-$1$-lower subsemilattices $L_0\subseteq L_1\subseteq L_2$, there exist a universal algebra $\mathcal A$ and an isomorphism $\varphi$ of the lattice $L$ onto the lattice $\mathrm{Sub}\mathcal A$ such that $\varphi(L_0)=\mathrm{OFSub}\mathcal A$, $\varphi(L_1)=\mathrm{POFSub}\mathcal A$, $\varphi(L_2)=\mathrm{FSub}\mathcal A$, and $\mathrm{PFSub}\mathcal A=\mathrm{FSub}\mathcal A$.
Keywords: semilattice
Mots-clés : definable subalgebra.
@article{AL_2012_51_2_a7,
     author = {A. G. Pinus},
     title = {Semilattices of definable {subalgebras.~II}},
     journal = {Algebra i logika},
     pages = {276--284},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a7/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Semilattices of definable subalgebras.~II
JO  - Algebra i logika
PY  - 2012
SP  - 276
EP  - 284
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a7/
LA  - ru
ID  - AL_2012_51_2_a7
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Semilattices of definable subalgebras.~II
%J Algebra i logika
%D 2012
%P 276-284
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a7/
%G ru
%F AL_2012_51_2_a7
A. G. Pinus. Semilattices of definable subalgebras.~II. Algebra i logika, Tome 51 (2012) no. 2, pp. 276-284. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a7/

[1] A. G. Pinus, “O polureshëtkakh formulnykh podalgebr”, Algebra i logika, 44:4 (2005), 474–482 | MR | Zbl

[2] A. G. Pinus, “O sobstvennykh avtomorfizmakh universalnykh algebr”, Sib. matem. zh., 45:6 (2004), 1329–1337 | MR | Zbl

[3] A. G. Pinus, “O podpolureshëtkakh formulnykh i otkryto formulnykh kongruentsii reshëtki vsekh kongruentsii universalnoi algebry”, Sib. matem. zh., 47:4 (2006), 865–872 | MR | Zbl

[4] A. G. Pinus, “O formulnosti proizvodnykh ob'ektov na universalnykh algebrakh”, Izv. vuzov. Matem., 2006, no. 3, 36–40 | MR | Zbl

[5] A. G. Pinus, “O termalnykh i polinomialnykh endomorfizmakh universalnykh algebr”, Algebra i logika, 49:1 (2010), 18–25 | MR | Zbl

[6] G. Birkhoff, O. Frink, “Representations of lattices by sets”, Trans. Am. Math. Soc., 64 (1948), 299–316 | DOI | MR | Zbl

[7] G. Grettser, Obschaya teoriya reshëtok, Mir, M., 1982 | MR