Recognition complexity of theories and their computational expressivity
Algebra i logika, Tome 51 (2012) no. 2, pp. 216-238
Cet article a éte moissonné depuis la source Math-Net.Ru
Computational complexity of a theory for a class $\mathfrak B$ of Boolean algebras is evaluated. We introduce a concept of computational expressivity for a theory, which is close in meaning to its computational complexity, but, as distinct from the latter, also fits well with undecidable theories.
Keywords:
Boolean algebra, theory, computational expressivity of theories.
@article{AL_2012_51_2_a4,
author = {I. V. Latkin},
title = {Recognition complexity of theories and their computational expressivity},
journal = {Algebra i logika},
pages = {216--238},
year = {2012},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a4/}
}
I. V. Latkin. Recognition complexity of theories and their computational expressivity. Algebra i logika, Tome 51 (2012) no. 2, pp. 216-238. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a4/
[1] M. O. Rabin, “Razreshimye teorii”, Spravochnaya kniga po matematicheskoi logike, ch. III, Nauka, M., 1982, 77–111
[2] M. J. Fischer, M. O. Rabin, “Super-exponential complexity of Presburger arithmetic”, Complexity of Comput., Proc. Symp. Appl. Math., New York City, 1973, 1974, 27–41 | MR
[3] A. R. Meyer, “The inherent computational complexity of theories of ordered sets”, Proc. Int. Congr. Math., v. 2, Vancouver, 1974, 1975, 477–482 | MR
[4] A. Akho, Dzh. Khopkroft, Dzh. Ulman, Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979 | MR
[5] S. K. Klini, Vvedenie v metamatematiku, Inostr. lit-ra, M., 1957 | MR
[6] A. I. Maltsev, Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR