Interpolation in weakly transitive modal logics
Algebra i logika, Tome 51 (2012) no. 2, pp. 197-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an axiomatization of 16 extensions of the logic $DL$ possessing the deductive interpolation property (IPD). It is proved that the weak interpolation property (WIP) is decidable in weakly transitive modal logics. Likewise, the weak amalgamation property is proved decidable for varieties of weakly transitive modal algebras.
Keywords: weakly transitive modal logics, $DL$-logics, decidability, axiomatization, interpolation property, amalgamability.
@article{AL_2012_51_2_a3,
     author = {A. V. Karpenko},
     title = {Interpolation in weakly transitive modal logics},
     journal = {Algebra i logika},
     pages = {197--215},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a3/}
}
TY  - JOUR
AU  - A. V. Karpenko
TI  - Interpolation in weakly transitive modal logics
JO  - Algebra i logika
PY  - 2012
SP  - 197
EP  - 215
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a3/
LA  - ru
ID  - AL_2012_51_2_a3
ER  - 
%0 Journal Article
%A A. V. Karpenko
%T Interpolation in weakly transitive modal logics
%J Algebra i logika
%D 2012
%P 197-215
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a3/
%G ru
%F AL_2012_51_2_a3
A. V. Karpenko. Interpolation in weakly transitive modal logics. Algebra i logika, Tome 51 (2012) no. 2, pp. 197-215. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a3/

[1] S. A. Kripke, “Semantical analysis of modal logic. I: Normal propositional calculi”, Z. Math. Logik Grundlagen Math., 9 (1963), 67–96 | DOI | MR | Zbl

[2] A. V. Karpenko, L. L. Maksimova, “Prostye slabo tranzitivnye modalnye algebry”, Algebra i logika, 49:3 (2010), 346–365 | MR | Zbl

[3] A. V. Karpenko, “Interpolyatsionnye svoistva v rasshireniyakh logiki neravenstva”, Sib. matem. zh., 51:3 (2010), 553–568 | MR | Zbl

[4] K. Segerberg, “A note on the logic of elsewhere”, Theoria, 46:2/3 (1980), 183–187 | DOI | MR

[5] L. L. Esakia, “Slabaya tranzitivnost – restitutsiya”, Logicheskie issledovaniya, sb., In-t filosofii RAN, 8, Nauka, M., 2002, 244–255 | MR

[6] V. Goranko, “Modal definability in enriched languages”, Notre Dame J. Formal Logic, 31:1 (1990), 81–105 | DOI | MR | Zbl

[7] L. Uridia, “The modal logic of “Somewhere else”: an algebraic consideration”, Proc. 4th Int. Symp. Logic, Lang. Comput., 2003

[8] M. de Rijke, “The modal logic of inequality”, J. Symb. Log., 57:2 (1992), 566–584 | DOI | MR | Zbl

[9] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[10] L. Maksimova, “Definability and interpolation in non-classical logics”, Stud. Log., 82:2 (2006), 271–291 | DOI | MR | Zbl

[11] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, 46, Oxford Sci. Publ., Clarendon Press, Oxford, 2005 | MR | Zbl

[12] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR | Zbl

[13] A. V. Karpenko, “Slaboe interpolyatsionnoe svoistvo v rasshireniyakh logik S4 i K4”, Algebra i logika, 47:6 (2008), 705–722 | MR | Zbl

[14] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl

[15] L. Maksimova, “On a form of interpolation in modal logic”, Bull. Symb. Log., 12:2 (2006), 340 | MR

[16] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 ; E. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR | MR

[17] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[18] V. A. Yankov, “O svyazi mezhdu vyvodimostyu v intuitsionistskom ischislenii vyskazyvanii i konechnymi implikativnymi strukturami”, Dokl. AN SSSR, 151:6 (1963), 1293–1294 | Zbl

[19] W. Rautenberg, “Splitting lattices of logics”, Arch. Math. Logik Grundlagenforsch., 20 (1980), 155–159 | DOI | MR | Zbl

[20] P. A. Shrainer, “Avtomaticheskoe raspoznavanie interpolyatsii v modalnykh ischisleniyakh”, Algebra i logika, 46:1 (2007), 103–119 | MR | Zbl

[21] W. J. Blok, “The lattice of modal logics: an algebraic investigation”, J. Symb. Log., 45:6 (1980), 221–236 | DOI | MR | Zbl

[22] G. Birkhoff, “On the combination of subalgebras”, Proc. Camb. Philos. Soc., 29 (1933), 441–464 | DOI | Zbl

[23] V. Shehtman, “ ‘Everywhere’ and ‘here’ ”, J. Appl. Non-Class. Log., 9:2/3 (1999), 369–379 | DOI | MR | Zbl

[24] S. K. Thomason, “An incompleteness theorem in modal logic”, Theoria, 40 (1974), 30–34 | DOI | MR | Zbl

[25] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[26] L. L. Maksimova, “Ob odnoi klassifikatsii modalnykh logik”, Algebra i logika, 18:3 (1979), 328–340 | MR | Zbl

[27] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl

[28] L. L. Maksimova, “Razreshimost problemy interpolyatsii i rodstvennykh svoistv v tablichnykh logikakh”, Algebra i logika, 48:6 (2009), 754–792 | MR | Zbl