A stability criterion
Algebra i logika, Tome 51 (2012) no. 2, pp. 193-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We come up with an independent proof for a corollary to the main theorem in [Yu. L. Ershov, “Stability preservation theorems”, Algebra Logika, 47, No. 3, 269–287 (2008)], since that corollary is the degenerate case of the main theorem (with empty sets $B_0$ and $B_1$), which establishes a stability criterion for a Henselian valued field. Such a proof is given here based on an analysis of tame and purely wild extensions made in [Yu. L. Ershov, “Tame and purely wild extensions of valued fields”, Algebra Analysis, 19, No. 5, 124–136 (2007)].
Keywords: Henselian valued field, stability, tame extension, purely wild extension.
@article{AL_2012_51_2_a2,
     author = {Yu. L. Ershov},
     title = {A stability criterion},
     journal = {Algebra i logika},
     pages = {193--196},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a2/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - A stability criterion
JO  - Algebra i logika
PY  - 2012
SP  - 193
EP  - 196
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a2/
LA  - ru
ID  - AL_2012_51_2_a2
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T A stability criterion
%J Algebra i logika
%D 2012
%P 193-196
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a2/
%G ru
%F AL_2012_51_2_a2
Yu. L. Ershov. A stability criterion. Algebra i logika, Tome 51 (2012) no. 2, pp. 193-196. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a2/

[1] Yu. L. Ershov, “Teoremy o sokhranenii stabilnosti”, Algebra i logika, 47:3 (2008), 269–287 | MR | Zbl

[2] Yu. L. Ershov, “Ruchnye i chisto dikie rasshireniya normirovannykh polei”, Algebra i analiz, 19:5 (2007), 124–136 | MR

[3] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000