A stability criterion
Algebra i logika, Tome 51 (2012) no. 2, pp. 193-196
Cet article a éte moissonné depuis la source Math-Net.Ru
We come up with an independent proof for a corollary to the main theorem in [Yu. L. Ershov, “Stability preservation theorems”, Algebra Logika, 47, No. 3, 269–287 (2008)], since that corollary is the degenerate case of the main theorem (with empty sets $B_0$ and $B_1$), which establishes a stability criterion for a Henselian valued field. Such a proof is given here based on an analysis of tame and purely wild extensions made in [Yu. L. Ershov, “Tame and purely wild extensions of valued fields”, Algebra Analysis, 19, No. 5, 124–136 (2007)].
Keywords:
Henselian valued field, stability, tame extension, purely wild extension.
@article{AL_2012_51_2_a2,
author = {Yu. L. Ershov},
title = {A stability criterion},
journal = {Algebra i logika},
pages = {193--196},
year = {2012},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a2/}
}
Yu. L. Ershov. A stability criterion. Algebra i logika, Tome 51 (2012) no. 2, pp. 193-196. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a2/
[1] Yu. L. Ershov, “Teoremy o sokhranenii stabilnosti”, Algebra i logika, 47:3 (2008), 269–287 | MR | Zbl
[2] Yu. L. Ershov, “Ruchnye i chisto dikie rasshireniya normirovannykh polei”, Algebra i analiz, 19:5 (2007), 124–136 | MR
[3] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000