Thompson's conjecture for simple groups with connected prime graph
Algebra i logika, Tome 51 (2012) no. 2, pp. 168-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with finite simple groups $G$ with the property $\pi(G)\subseteq\{2,3,5,7,11,13,17\}$, where $\pi(G)$ is the set of all prime divisors of the order of the group $G$. The set of all such groups is denoted by $\zeta_{17}$. A conjecture of Thompson in [Unsolved Problems in Group Theory, The Kourovka Notebook, 17th edn., Institute of Mathematics SO RAN, Novosibirsk (2010), Question 12.38] is proved valid for all groups with connected prime graph in $\zeta_{17}$.
Keywords: finite simple group, Thompson’s conjecture.
@article{AL_2012_51_2_a1,
     author = {I. B. Gorshkov},
     title = {Thompson's conjecture for simple groups with connected prime graph},
     journal = {Algebra i logika},
     pages = {168--192},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Thompson's conjecture for simple groups with connected prime graph
JO  - Algebra i logika
PY  - 2012
SP  - 168
EP  - 192
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/
LA  - ru
ID  - AL_2012_51_2_a1
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Thompson's conjecture for simple groups with connected prime graph
%J Algebra i logika
%D 2012
%P 168-192
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/
%G ru
%F AL_2012_51_2_a1
I. B. Gorshkov. Thompson's conjecture for simple groups with connected prime graph. Algebra i logika, Tome 51 (2012) no. 2, pp. 168-192. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/

[1] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] A. S. Kondratev, “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Matem. sb., 180:6 (1989), 787–797 | MR | Zbl

[4] Guiyun Chen, “On Thompson's conjecture”, J. Algebra, 185:1 (1996), 184–193 | DOI | MR | Zbl

[5] A. V. Vasil'ev, “On Thompson's Conjecture”, Sib. elektron. matem. izv., 6 (2009), 457–464 | MR

[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Electr. Math. Rep., 6 (2009), 1–12 http://semr.math.nsc.ru/v6/p1-12.pdf | MR

[7] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[9] I. A. Vakula, “O stroenii konechnykh grupp, izospektralnykh znakoperemennoi gruppe”, Tr. IMM UrO RAN, 16, no. 3, 2010, 45–60

[10] The GAP Group, GAP – Groups, algorithms, and programming, Vers. 4.4.12, 2008 http://www.gap-system.org

[11] A. V. Vasilev, “O raspoznavanii vsekh konechnykh neabelevykh prostykh grupp, prostye deliteli poryadkov kotorykh ne prevoskhodyat 13”, Sib. matem. zh., 46:2 (2005), 315–324 | MR | Zbl