Thompson's conjecture for simple groups with connected prime graph
Algebra i logika, Tome 51 (2012) no. 2, pp. 168-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with finite simple groups $G$ with the property $\pi(G)\subseteq\{2,3,5,7,11,13,17\}$, where $\pi(G)$ is the set of all prime divisors of the order of the group $G$. The set of all such groups is denoted by $\zeta_{17}$. A conjecture of Thompson in [Unsolved Problems in Group Theory, The Kourovka Notebook, 17th edn., Institute of Mathematics SO RAN, Novosibirsk (2010), Question 12.38] is proved valid for all groups with connected prime graph in $\zeta_{17}$.
Keywords: finite simple group, Thompson’s conjecture.
@article{AL_2012_51_2_a1,
     author = {I. B. Gorshkov},
     title = {Thompson's conjecture for simple groups with connected prime graph},
     journal = {Algebra i logika},
     pages = {168--192},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Thompson's conjecture for simple groups with connected prime graph
JO  - Algebra i logika
PY  - 2012
SP  - 168
EP  - 192
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/
LA  - ru
ID  - AL_2012_51_2_a1
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Thompson's conjecture for simple groups with connected prime graph
%J Algebra i logika
%D 2012
%P 168-192
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/
%G ru
%F AL_2012_51_2_a1
I. B. Gorshkov. Thompson's conjecture for simple groups with connected prime graph. Algebra i logika, Tome 51 (2012) no. 2, pp. 168-192. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a1/