Some presentations of the real number field
Algebra i logika, Tome 51 (2012) no. 1, pp. 96-128
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every two $\Sigma$-presentations of an ordered field $\mathbb R$ of reals over $\mathbb{HF(R)}$, whose universes are subsets of $\mathbb R$, are mutually $\Sigma$-isomorphic. As a consequence, for a series of functions $f\colon\mathbb R\to\mathbb R$ (e.g., $\exp$, $\sin$, $\cos$, $\ln$), it is stated that the structure $\mathbb R=\langle R,+,\times,,0,1,f\rangle$ lacks such $\Sigma$-presentations over $\mathbb{HF(R)}$.
Keywords:
$\Sigma$-presentation, ordered field of reals.
@article{AL_2012_51_1_a4,
author = {A. S. Morozov},
title = {Some presentations of the real number field},
journal = {Algebra i logika},
pages = {96--128},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a4/}
}
A. S. Morozov. Some presentations of the real number field. Algebra i logika, Tome 51 (2012) no. 1, pp. 96-128. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a4/