Some presentations of the real number field
Algebra i logika, Tome 51 (2012) no. 1, pp. 96-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every two $\Sigma$-presentations of an ordered field $\mathbb R$ of reals over $\mathbb{HF(R)}$, whose universes are subsets of $\mathbb R$, are mutually $\Sigma$-isomorphic. As a consequence, for a series of functions $f\colon\mathbb R\to\mathbb R$ (e.g., $\exp$, $\sin$, $\cos$, $\ln$), it is stated that the structure $\mathbb R=\langle R,+,\times,,0,1,f\rangle$ lacks such $\Sigma$-presentations over $\mathbb{HF(R)}$.
Keywords: $\Sigma$-presentation, ordered field of reals.
@article{AL_2012_51_1_a4,
     author = {A. S. Morozov},
     title = {Some presentations of the real number field},
     journal = {Algebra i logika},
     pages = {96--128},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a4/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - Some presentations of the real number field
JO  - Algebra i logika
PY  - 2012
SP  - 96
EP  - 128
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_1_a4/
LA  - ru
ID  - AL_2012_51_1_a4
ER  - 
%0 Journal Article
%A A. S. Morozov
%T Some presentations of the real number field
%J Algebra i logika
%D 2012
%P 96-128
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_1_a4/
%G ru
%F AL_2012_51_1_a4
A. S. Morozov. Some presentations of the real number field. Algebra i logika, Tome 51 (2012) no. 1, pp. 96-128. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a4/

[1] J. Barwise, Admissible sets and structures. An approach to definability theory, Perspec. Math. Logic, Springer-Velag, Berlin, 1975 | MR | Zbl

[2] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[3] Yu. L. Ershov, “$\Sigma$-definability of algebraic systems”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 235–260 | DOI | MR | Zbl

[4] M. V. Korovina, “Obobschennaya vychislimost funktsii na veschestvennykh chislakh”, Logicheskie metody v programmirovanii, sb., Vychisl. sist., 133, 1990, 38–67 | MR | Zbl

[5] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “$\mathbb{HF}$-Computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper, A. Sorbi, World Scientific, London, 2011, 173–248 | MR

[6] A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley, 1951 | MR | Zbl

[7] D. Marker, Model theory: An introduction, Grad. Texts Math., 217, Springer-Verlag, New York, etc., 2002 | MR | Zbl