Nonfinite basicity for a certain number system
Algebra i logika, Tome 51 (2012) no. 1, pp. 82-95
A negative answer is given to the question whether there exists a finite basis for real numbers with multiplication and a unary operation $1-x$.
Keywords:
real numbers, finite basis of identities.
@article{AL_2012_51_1_a3,
author = {A. Kungozhin},
title = {Nonfinite basicity for a~certain number system},
journal = {Algebra i logika},
pages = {82--95},
year = {2012},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a3/}
}
A. Kungozhin. Nonfinite basicity for a certain number system. Algebra i logika, Tome 51 (2012) no. 1, pp. 82-95. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a3/
[1] L. A. Zadeh, “Fuzzy sets”, Inf. Control, 8 (1965), 338–353 | DOI | MR | Zbl
[2] B. Poizat, A course in model theory. An introduction in contemporary mathematical logic, Universitext, Springer, New York, NY, 2000 | DOI | MR
[3] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR
[4] G. Birkhoff, “On the structure of abstract algebras”, Proc. Cambridge Philos. Soc., 31 (1935), 433–454 | DOI | Zbl
[5] A. M. Kungozhin, “Ob odnoi algebre nechetkoi logiki”, Tr. konf., posvyasch. 80-letiyu akad. A. D. Taimanova, ITPM AN RK, Alma-Ata, 1998, 124–128