Nonfinite basicity for a~certain number system
Algebra i logika, Tome 51 (2012) no. 1, pp. 82-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A negative answer is given to the question whether there exists a finite basis for real numbers with multiplication and a unary operation $1-x$.
Keywords: real numbers, finite basis of identities.
@article{AL_2012_51_1_a3,
     author = {A. Kungozhin},
     title = {Nonfinite basicity for a~certain number system},
     journal = {Algebra i logika},
     pages = {82--95},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a3/}
}
TY  - JOUR
AU  - A. Kungozhin
TI  - Nonfinite basicity for a~certain number system
JO  - Algebra i logika
PY  - 2012
SP  - 82
EP  - 95
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_1_a3/
LA  - ru
ID  - AL_2012_51_1_a3
ER  - 
%0 Journal Article
%A A. Kungozhin
%T Nonfinite basicity for a~certain number system
%J Algebra i logika
%D 2012
%P 82-95
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_1_a3/
%G ru
%F AL_2012_51_1_a3
A. Kungozhin. Nonfinite basicity for a~certain number system. Algebra i logika, Tome 51 (2012) no. 1, pp. 82-95. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a3/

[1] L. A. Zadeh, “Fuzzy sets”, Inf. Control, 8 (1965), 338–353 | DOI | MR | Zbl

[2] B. Poizat, A course in model theory. An introduction in contemporary mathematical logic, Universitext, Springer, New York, NY, 2000 | DOI | MR

[3] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[4] G. Birkhoff, “On the structure of abstract algebras”, Proc. Cambridge Philos. Soc., 31 (1935), 433–454 | DOI | Zbl

[5] A. M. Kungozhin, “Ob odnoi algebre nechetkoi logiki”, Tr. konf., posvyasch. 80-letiyu akad. A. D. Taimanova, ITPM AN RK, Alma-Ata, 1998, 124–128