Computable dimensions of Pappusian and Desarguesian projective planes
Algebra i logika, Tome 51 (2012) no. 1, pp. 61-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computable presentations of projective planes are studied. Based on an interpretation of a class of fields (associative skew fields) within a class of Pappusian (Desarguesian) projective planes, it is proved that the question whether there exists a computable presentation for a Pappusian (Desarguesian) projective plane reduces to asking if there exists a computable presentation for a corresponding field (associative skew field). It is stated that the computable dimension of a Pappusian (Desarguesian) projective plane coincides with that of a corresponding field (associative skew field).
Keywords: projective plane, Pappusian projective plane, Desarguesian projective plane, computable model
Mots-clés : computable dimension.
@article{AL_2012_51_1_a2,
     author = {N. T. Kogabaev},
     title = {Computable dimensions of {Pappusian} and {Desarguesian} projective planes},
     journal = {Algebra i logika},
     pages = {61--81},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a2/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - Computable dimensions of Pappusian and Desarguesian projective planes
JO  - Algebra i logika
PY  - 2012
SP  - 61
EP  - 81
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_1_a2/
LA  - ru
ID  - AL_2012_51_1_a2
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T Computable dimensions of Pappusian and Desarguesian projective planes
%J Algebra i logika
%D 2012
%P 61-81
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_1_a2/
%G ru
%F AL_2012_51_1_a2
N. T. Kogabaev. Computable dimensions of Pappusian and Desarguesian projective planes. Algebra i logika, Tome 51 (2012) no. 1, pp. 61-81. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a2/

[1] A. I. Shirshov, A. A. Nikitin, “K teorii proektivnykh ploskostei”, Algebra i logika, 20:3 (1981), 330–356 | MR | Zbl

[2] A. I. Shirshov, A. A. Nikitin, Algebraicheskaya teoriya proektivnykh ploskostei, Novosibirskii gos. un-t, Novosibirsk, 1987 | Zbl

[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[4] D. R. Hughes, F. C. Piper, Projective planes, Grad. Texts Math., 6, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[5] J. Robinson, “Definability and decision problems in arithmetic”, J. Symb. Log., 14:2 (1949), 98–114 | DOI | MR | Zbl

[6] Yu. L. Ershov, Teoriya numeratsii, ch. 3, Novosibirskii gos. un-t, Novosibirsk, 1974 | MR

[7] R. Miller, H. Schoutens, Computably categorical fields via Fermat's Last Theorem, submitted