Algebraic geometry over algebraic structures.~V. The case of arbitrary signature
Algebra i logika, Tome 51 (2012) no. 1, pp. 41-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general theory of algebraic geometry over an arbitrary algebraic structure $\mathcal A$ in a language $\mathrm L$ with no predicates is consistently presented in a series of papers on universal algebraic geometry [B. Fine (ed.) et al., Aspects of infinite groups. A Festschrift in honor of A. Gaglione (Papers of the conf., Fairfield, USA, March 2007 in honour of A. Gaglione's 60th birthday), (Algebra Discr. Math. (Hackensack), 1), Hackensack, NJ, World Sci., 2008, 80–111; submitted to Fund. Appl. Math.; Southeast Asian Bull. Math., accepted for publ.; Algebra i Logika, 49, No. 6 (2010), 715–756]. The restriction that we impose on the language is not crucial. This is done for the sake of readers who only get acquainted with universal algebraic geometry. Here we show how the entire material accumulated in works on universal geometry can be carried over without essential changes to the case of an arbitrary signature $\mathrm L$.
Keywords: universal algebraic geometry, algebraic set, coordinate algebra.
Mots-clés : algebraic structure
@article{AL_2012_51_1_a1,
     author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
     title = {Algebraic geometry over algebraic {structures.~V.} {The} case of arbitrary signature},
     journal = {Algebra i logika},
     pages = {41--60},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a1/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over algebraic structures.~V. The case of arbitrary signature
JO  - Algebra i logika
PY  - 2012
SP  - 41
EP  - 60
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_1_a1/
LA  - ru
ID  - AL_2012_51_1_a1
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Algebraic geometry over algebraic structures.~V. The case of arbitrary signature
%J Algebra i logika
%D 2012
%P 41-60
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_1_a1/
%G ru
%F AL_2012_51_1_a1
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic geometry over algebraic structures.~V. The case of arbitrary signature. Algebra i logika, Tome 51 (2012) no. 1, pp. 41-60. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a1/

[1] B. Plotkin, “Varieties of algebras and algebraic varieties”, Isr. J. Math., 96, Pt. B (1996), 511–522 | DOI | MR | Zbl

[2] B. Plotkin, “Algebras with the same (algebraic) geometry”, Matematicheskaya logika i algebra, Sbornik statei. K 100-letiyu so dnya rozhdeniya akad. P. S. Novikova, Tr. MIAN, 242, Nauka, M., 2003, 176–207 | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[4] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups. A Festschrift in honor of A. Gaglione, Papers of the conf. in honour of A. Gaglione's 60th birthday (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | DOI | MR | Zbl

[6] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fund. prikl. matem. (to appear)

[7] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math. (to appear) | MR

[8] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756 | MR

[9] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl