Hereditarily pure associative algebras over a~Dedekind ring whose maximal ideals have finite indices
Algebra i logika, Tome 50 (2011) no. 6, pp. 781-801.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.
Keywords: Dedekind ring, associative algebra, hereditarily pure algebra, elementary Abelian algebra, elementary Jacobsonian algebra.
@article{AL_2011_50_6_a5,
     author = {L. M. Martynov},
     title = {Hereditarily pure associative algebras over {a~Dedekind} ring whose maximal ideals have finite indices},
     journal = {Algebra i logika},
     pages = {781--801},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_6_a5/}
}
TY  - JOUR
AU  - L. M. Martynov
TI  - Hereditarily pure associative algebras over a~Dedekind ring whose maximal ideals have finite indices
JO  - Algebra i logika
PY  - 2011
SP  - 781
EP  - 801
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_6_a5/
LA  - ru
ID  - AL_2011_50_6_a5
ER  - 
%0 Journal Article
%A L. M. Martynov
%T Hereditarily pure associative algebras over a~Dedekind ring whose maximal ideals have finite indices
%J Algebra i logika
%D 2011
%P 781-801
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_6_a5/
%G ru
%F AL_2011_50_6_a5
L. M. Martynov. Hereditarily pure associative algebras over a~Dedekind ring whose maximal ideals have finite indices. Algebra i logika, Tome 50 (2011) no. 6, pp. 781-801. http://geodesic.mathdoc.fr/item/AL_2011_50_6_a5/

[1] L. M. Martynov, “O ponyatiyakh primarnosti, polnoty, redutsirovannosti i chistoty dlya proizvolnykh algebr”, Universalnaya algebra i eë prilozheniya, Trudy mezhd. seminara (Volgograd, 6–11 sentyabrya 1999), Peremena, Volgograd, 2000, 179–190

[2] A. I. Kornev, “O modulyakh s chistymi podmodulyami”, Universalnaya algebra i eë prilozheniya, Trudy mezhd. seminara (Volgograd, 6–11 sentyabrya 1999), Peremena, Volgograd, 2000, 144–152

[3] A. I. Kornev, “Prostye po chistote moduli redutsirovannykh mnogoobrazii modulei nad kommutativnymi koltsami”, Vestnik Omskogo un-ta, 2000, no. 4, 13–15 | MR | Zbl

[4] A. A. Tuganbaev, “Primitively pure submodules and primitively divisible modules”, J. Math. Sci. (New York), 110:3 (2002), 2746–2754 | DOI | MR | Zbl

[5] O. V. Knyazev, “O chistykh algebrakh s vydelennym elementom”, Matematika i informatika: nauka i obrazovanie, 1, Izd-vo OmGPU, Omsk, 2001, 10–13

[6] O. V. Knyazev, “O chistykh algebrakh”, Vestnik Omckogo un-ta, 2001, no. 3, 18–20 | Zbl

[7] O. V. Knyazev, “Ob absolyutno chistykh algebrakh s vydelennym elementom”, Matematika i informatika: nauka i obrazovanie, 2, Izd-vo OmGPU, Omsk, 2002, 23–25

[8] O. V. Knyazev, “Nasledstvenno chistye kommutativnye monoidy”, Matematika i informatika: nauka i obrazovanie, 3, Izd-vo OmGPU, Omsk, 2003, 16–19

[9] O. V. Knyazev, “Nasledstvenno chistye monoidy”, Sib. elektr. matem. izv., 2 (2005), 83–87 http://semr.math.nsc.ru | MR | Zbl

[10] O. V. Knyazev, “Polugruppy s nasledstvenno chistymi podpolugruppami”, Izv. Ural. gos. un-ta, 2005, no. 38, Matematika i mekhanika, Vyp. 8, 69–79 | Zbl

[11] O. V. Knyazev, “Prostye po chistote vpolne regulyarnye polugruppy”, Vestnik Omckogo un-ta, 2006, no. 4, 17–20

[12] O. V. Knyazev, “O chistykh tsiklicheskikh podgruppakh grupp”, Matematika i informatika: nauka i obrazovanie, 5, Izd-vo OmGPU, Omsk, 2006, 24–26

[13] I. V. Znaeva, “Nasledstvenno chistye algebry Li”, Matematika i informatika: nauka i obrazovanie, 6, Izd-vo OmGPU, Omsk, 2007, 12–15

[14] L. M. Martynov, “Nasledstvenno chistye assotsiativnye koltsa”, Tezisy dokl. mezhd. algebr. konf., posvyasch. stoletiyu so dnya rozhdeniya P. G. Kontorovicha i 70-letiyu L. N. Shevrina, Izd-vo UrGU, Ekaterinburg, 2005, 111–112

[15] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, v. 1, IL, M., 1963

[16] L. M. Martynov, “O primarnykh i redutsirovannykh mnogoobraziyakh monoassotsiativnykh algebr”, Sib. matem. zh., 42:1 (2001), 103–112 | MR | Zbl

[17] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[18] L. Sussman, A. Foster, “On rings in which $a^{n(a)}=a$”, Math. Ann., 140:4 (1960), 324–333 | DOI | MR | Zbl

[19] T. R. Sundararaman, “Precomplete varieties of $R$-algebras”, Algebra Univers., 27:2 (1974), 243–256 | MR

[20] V. A. Artamonov, “Reshëtki mnogoobrazii lineinykh algebr”, UMN, 33:2(200) (1978), 135–167 | MR | Zbl

[21] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[22] L. M. Martynov, “O nasledstvenno chistykh assotsiativnykh algebrakh nad dedekindovymi koltsami”, Tez. dokl. mezhd. konf. “Maltsevskie chteniya”, posvyasch. 70-letiyu akad. Yu. L. Ershova (2–6 maya 2010 g.), Novosibirsk, 2010, 113