Free actions of groups of exponent~5
Algebra i logika, Tome 50 (2011) no. 5, pp. 685-688.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that groups of exponent 5 actings freely on Abelian groups are cyclic.
Keywords: group of exponent 5, Abelian group, cyclic group.
@article{AL_2011_50_5_a5,
     author = {E. Jabara},
     title = {Free actions of groups of exponent~5},
     journal = {Algebra i logika},
     pages = {685--688},
     publisher = {mathdoc},
     volume = {50},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_5_a5/}
}
TY  - JOUR
AU  - E. Jabara
TI  - Free actions of groups of exponent~5
JO  - Algebra i logika
PY  - 2011
SP  - 685
EP  - 688
VL  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_5_a5/
LA  - ru
ID  - AL_2011_50_5_a5
ER  - 
%0 Journal Article
%A E. Jabara
%T Free actions of groups of exponent~5
%J Algebra i logika
%D 2011
%P 685-688
%V 50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_5_a5/
%G ru
%F AL_2011_50_5_a5
E. Jabara. Free actions of groups of exponent~5. Algebra i logika, Tome 50 (2011) no. 5, pp. 685-688. http://geodesic.mathdoc.fr/item/AL_2011_50_5_a5/

[1] N. D. Gupta, V. D. Mazurov, “On groups with small orders of elements”, Bull. Aust. Math. Soc., 60:2 (1999), 197–205 | DOI | MR | Zbl

[2] E. Jabara, “Fixed point free actions of groups of exponent 5”, J. Aust. Math. Soc., 77:3 (2004), 297–304 | DOI | MR | Zbl