$\Sigma$-uniform structures and $\Sigma$-functions.~I
Algebra i logika, Tome 50 (2011) no. 5, pp. 659-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a $\Sigma$-uniform structure is introduced. A condition is derived which is necessary and sufficient for a universal $\Sigma$-function to exist in a hereditarily finite admissible set over a $\Sigma$-uniform structure.
Keywords: hereditarily finite admissible set, $\Sigma$-definability, universal $\Sigma$-function, $\Sigma$-uniform structure.
@article{AL_2011_50_5_a4,
     author = {A. N. Khisamiev},
     title = {$\Sigma$-uniform structures and $\Sigma${-functions.~I}},
     journal = {Algebra i logika},
     pages = {659--684},
     publisher = {mathdoc},
     volume = {50},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_5_a4/}
}
TY  - JOUR
AU  - A. N. Khisamiev
TI  - $\Sigma$-uniform structures and $\Sigma$-functions.~I
JO  - Algebra i logika
PY  - 2011
SP  - 659
EP  - 684
VL  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_5_a4/
LA  - ru
ID  - AL_2011_50_5_a4
ER  - 
%0 Journal Article
%A A. N. Khisamiev
%T $\Sigma$-uniform structures and $\Sigma$-functions.~I
%J Algebra i logika
%D 2011
%P 659-684
%V 50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_5_a4/
%G ru
%F AL_2011_50_5_a4
A. N. Khisamiev. $\Sigma$-uniform structures and $\Sigma$-functions.~I. Algebra i logika, Tome 50 (2011) no. 5, pp. 659-684. http://geodesic.mathdoc.fr/item/AL_2011_50_5_a4/

[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk ; 2-е изд., Экономика, М., 2000 | MR

[2] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl

[3] A. S. Morozov, V. G. Puzarenko, “O $\Sigma$-podmnozhestvakh naturalnykh chisel”, Algebra i logika, 43:3 (2004), 291–320 | MR | Zbl

[4] I. Sh. Kalimullin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71 | MR | Zbl

[5] V. G. Puzarenko, “K vychislimosti na spetsialnykh modelyakh”, Sib. matem. zh., 46:1 (2005), 185–208 | MR | Zbl

[6] A. N. Khisamiev, “O $\Sigma$-podmnozhestvakh naturalnykh chisel nad abelevymi gruppami”, Sib. matem. zh., 47:3 (2006), 695–706 | MR | Zbl

[7] A. N. Khisamiev, “$\Sigma$-ogranichennye algebraicheskie sistemy i universalnye funktsii, I”, Sib. matem. zh., 51:1 (2010), 217–235 | MR | Zbl

[8] A. N. Khisamiev, “$\Sigma$-ogranichennye algebraicheskie sistemy i universalnye funktsii, II”, Sib. matem. zh., 51:3 (2010), 676–693 | MR | Zbl

[9] A. N. Khisamiev, “$\Sigma$-odnorodnye algebraicheskie sistemy i universalnye $\Sigma$-funktsii”, Tr. mezhd. konf. “Vychislimost i modeli”, VKGTU, Ust-Kamenogorsk, 2010, 115–130