Identities of unitary finite-dimensional algebras
Algebra i logika, Tome 50 (2011) no. 5, pp. 563-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with growth functions of sequences of codimensions of identities in finite-dimensional algebras with unity over a field of characteristic zero. For three-dimensional algebras, it is proved that the codimension sequence grows asymptotically as $a^n$, where $a$ is $1,2$, or $3$. For arbitrary finite-dimensional algebras, it is shown that the codimension growth either is polynomial or is not slower than $2^n$. We give an example of a finite-dimensional algebra with growth rate $a^n$ with fractional exponent $a=\frac3{\sqrt[3]4}+1$.
Keywords: finite-dimensional unitary algebra, growth function of sequences of codimensions of identities.
@article{AL_2011_50_5_a0,
     author = {M. V. Zaitsev},
     title = {Identities of unitary finite-dimensional algebras},
     journal = {Algebra i logika},
     pages = {563--594},
     publisher = {mathdoc},
     volume = {50},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_5_a0/}
}
TY  - JOUR
AU  - M. V. Zaitsev
TI  - Identities of unitary finite-dimensional algebras
JO  - Algebra i logika
PY  - 2011
SP  - 563
EP  - 594
VL  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_5_a0/
LA  - ru
ID  - AL_2011_50_5_a0
ER  - 
%0 Journal Article
%A M. V. Zaitsev
%T Identities of unitary finite-dimensional algebras
%J Algebra i logika
%D 2011
%P 563-594
%V 50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_5_a0/
%G ru
%F AL_2011_50_5_a0
M. V. Zaitsev. Identities of unitary finite-dimensional algebras. Algebra i logika, Tome 50 (2011) no. 5, pp. 563-594. http://geodesic.mathdoc.fr/item/AL_2011_50_5_a0/

[1] A. Regev, “Existence of identities in $A\otimes B$”, Isr. J. Math., 11 (1972), 131–152 | DOI | MR | Zbl

[2] V. N. Latyshev, “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya PI-algebr”, Uspekhi matem. nauk, 27:4(166) (1972), 213–214 | MR | Zbl

[3] M. V. Zaitsev, “Tozhdestva affinnykh algebr Katsa–Mudi”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 2, 33–36 | MR | Zbl

[4] M. V. Zaitsev, “Mnogoobraziya affinnykh algebr Katsa–Mudi”, Matem. zametki, 62:1 (1997), 95–102 | MR | Zbl

[5] S. P. Mischenko, “Tozhdestvo engelevosti i ego prilozhenie”, Matem. sb., 121(163):3(7) (1983), 423–430 | MR | Zbl

[6] S. P. Mishchenko, V. M. Petrogradsky, “Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra”, Commun. Algebra, 27:5 (1999), 2223–2230 | DOI | MR | Zbl

[7] M. V. Zaitsev, “Tselochislennost eksponent rosta tozhdestv konechnomernykh algebr Li”, Izv. RAN. Ser. matem., 66:3 (2002), 23–48 | MR | Zbl

[8] M. V. Zaitsev, S. P. Mischenko, “Tozhdestva superalgebr Li s nilpotentnym kommutantom”, Algebra i logika, 47:5 (2008), 617–645 | MR | Zbl

[9] A. Giambruno, M. Zaicev, “Codimension growth of special simple Jordan algebras”, Trans. Am. Math. Soc., 362:6 (2010), 3107–3123 | DOI | MR | Zbl

[10] A. Giambruno, M. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140:2 (1998), 145–155 | DOI | MR | Zbl

[11] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI-algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[12] A. Giambruno, M. Zaicev, “Multialternating Jordan polynomials and codimension growth of matrix algebras”, Linear Algebra Appl., 422:2–3 (2007), 372–379 | DOI | MR | Zbl

[13] S. Mishchenko, M. Zaicev, “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci. (New York), 93:6 (1999), 977–982 | DOI | MR | Zbl

[14] A. Giambruno, S. Mishchenko, M. Zaicev, “Codimensions of algebras and growth functions”, Adv. Math., 217:3 (2008), 1027–1052 | DOI | MR | Zbl

[15] A. Giambruno, S. Mishchenko, M. Zaicev, “Algebras with intermediate growth of the codimensions”, Adv. Appl. Math., 37:3 (2006), 360–377 | DOI | MR | Zbl

[16] A. Regev, “Codimensions and trace codimensions of matrices are asymptotically equal”, Isr. J. Math., 47 (1984), 246–250 | DOI | MR | Zbl

[17] A. Giambruno, A. Regev, M. Zaicev, “Simple and semisimple Lie algebras and codimension growth”, Trans. Am. Math. Soc., 352:4 (2000), 1935–1946 | DOI | MR | Zbl

[18] A. R. Kemer, “Shpekhtovost T-idealov so stepennym rostom korazmernostei”, Sib. matem. zh., 19:1 (1978), 54–69 | MR | Zbl

[19] S. P. Mischenko, “Nizhnie otsenki razmernostei neprivodimykh predstavlenii simmetricheskikh grupp i pokazateli eksponenty mnogoobrazii algebr Li”, Matem. sb., 187:1 (1996), 83–94 | MR | Zbl

[20] A. Giambruno, S. Mishchenko, M. Zaicev, “Codimension growth of two-dimensional non-associative algebras”, Proc. Am. Math. Soc., 135:11 (2007), 3405–3415 | DOI | MR | Zbl

[21] A. Giambruno, S. Mishchenko, M. Zaicev, “Polynomial identities of algebras of small dimension”, Commun. Algebra, 37:6 (2009), 1934–1948 | DOI | MR | Zbl

[22] Yu. A. Bahturin, V. Drensky, “Identities of bilinear mappings and graded polynomial identities of matrices”, Linear Algebra Appl., 369 (2003), 95–112 | DOI | MR | Zbl

[23] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Nauka, M., 1982 | MR

[24] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Math. Surv. Monogr., 122, Am. Math. Soc., Providence, RI, 2005 | MR | Zbl

[25] A. Giambruno, M. Zaicev, “On codimension growth of finite dimensional Lie superalgebras” (to appear)