Quantification over propositional formulas in probability logic: decidability issues
Algebra i logika, Tome 50 (2011) no. 4, pp. 533-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

A language for reasoning about probability is generalized by adding quantifiers over propositional formulas to the language. Then relevant decidability issues are considered. In particular, the results presented demonstrate that a rather weak fragment of the new language has an undecidable validity problem. On the other hand, it is stated that a restricted version of the validity problem is decidable for $\forall\exists$-sentences.
Keywords: probability logic, decidability.
Mots-clés : quantification over propositions
@article{AL_2011_50_4_a5,
     author = {S. O. Speranskii},
     title = {Quantification over propositional formulas in probability logic: decidability issues},
     journal = {Algebra i logika},
     pages = {533--546},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a5/}
}
TY  - JOUR
AU  - S. O. Speranskii
TI  - Quantification over propositional formulas in probability logic: decidability issues
JO  - Algebra i logika
PY  - 2011
SP  - 533
EP  - 546
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_4_a5/
LA  - ru
ID  - AL_2011_50_4_a5
ER  - 
%0 Journal Article
%A S. O. Speranskii
%T Quantification over propositional formulas in probability logic: decidability issues
%J Algebra i logika
%D 2011
%P 533-546
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_4_a5/
%G ru
%F AL_2011_50_4_a5
S. O. Speranskii. Quantification over propositional formulas in probability logic: decidability issues. Algebra i logika, Tome 50 (2011) no. 4, pp. 533-546. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a5/

[1] J. Y. Halpern, Reasoning about uncertainty, MIT Press, Cambridge, MA, 2003 | MR | Zbl

[2] R. Fagin, J. Y. Halpern, N. Megiddo, “A logic for reasoning about probabilities”, Inf. Comput., 87:1–2 (1990), 78–128 | DOI | MR | Zbl

[3] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[4] A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley, 1951 | MR | Zbl

[5] A. A. Borovkov, Teoriya veroyatnostei, URSS, M., 2009