Quantification over propositional formulas in probability logic: decidability issues
Algebra i logika, Tome 50 (2011) no. 4, pp. 533-546
Cet article a éte moissonné depuis la source Math-Net.Ru
A language for reasoning about probability is generalized by adding quantifiers over propositional formulas to the language. Then relevant decidability issues are considered. In particular, the results presented demonstrate that a rather weak fragment of the new language has an undecidable validity problem. On the other hand, it is stated that a restricted version of the validity problem is decidable for $\forall\exists$-sentences.
Keywords:
probability logic, decidability.
Mots-clés : quantification over propositions
Mots-clés : quantification over propositions
@article{AL_2011_50_4_a5,
author = {S. O. Speranskii},
title = {Quantification over propositional formulas in probability logic: decidability issues},
journal = {Algebra i logika},
pages = {533--546},
year = {2011},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a5/}
}
S. O. Speranskii. Quantification over propositional formulas in probability logic: decidability issues. Algebra i logika, Tome 50 (2011) no. 4, pp. 533-546. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a5/
[1] J. Y. Halpern, Reasoning about uncertainty, MIT Press, Cambridge, MA, 2003 | MR | Zbl
[2] R. Fagin, J. Y. Halpern, N. Megiddo, “A logic for reasoning about probabilities”, Inf. Comput., 87:1–2 (1990), 78–128 | DOI | MR | Zbl
[3] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR
[4] A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley, 1951 | MR | Zbl
[5] A. A. Borovkov, Teoriya veroyatnostei, URSS, M., 2009