Strongly $\eta$-representable degrees and limitwise monotonic functions
Algebra i logika, Tome 50 (2011) no. 4, pp. 504-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that each strongly $\eta$-representable degree contains a set that is a range of values for some $\boldsymbol0'$-limitwise monotonic function pseudoincreasing on $\mathbb Q$. Thus we obtain a description of strongly $\eta$-representable degrees in terms of $\boldsymbol0'$-limitwise monotonic functions.
Keywords: $\eta$-representable degree, $\boldsymbol0'$-limitwise monotonic function.
@article{AL_2011_50_4_a3,
     author = {M. V. Zubkov},
     title = {Strongly $\eta$-representable degrees and limitwise monotonic functions},
     journal = {Algebra i logika},
     pages = {504--520},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/}
}
TY  - JOUR
AU  - M. V. Zubkov
TI  - Strongly $\eta$-representable degrees and limitwise monotonic functions
JO  - Algebra i logika
PY  - 2011
SP  - 504
EP  - 520
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/
LA  - ru
ID  - AL_2011_50_4_a3
ER  - 
%0 Journal Article
%A M. V. Zubkov
%T Strongly $\eta$-representable degrees and limitwise monotonic functions
%J Algebra i logika
%D 2011
%P 504-520
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/
%G ru
%F AL_2011_50_4_a3
M. V. Zubkov. Strongly $\eta$-representable degrees and limitwise monotonic functions. Algebra i logika, Tome 50 (2011) no. 4, pp. 504-520. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/

[1] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log., Omega Series, Springer-Verlag, Berlin etc., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funktsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl

[2] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR

[3] J. C. Rosenstein, Linear Orderings, Academic Press, New York, 1982 | MR | Zbl

[4] S. Fellner, Recursive and finite axiomatizability of linear orderings, Ph. D. Thesis, Rutgers Univ., New Brundswick, NJ, 1976 | MR

[5] M. Lerman, “On recursive linear orderings”, Logic year 1979-80, Univ. Conn./USA, Lect. Notes Math., 859, Springer-Verlag, Berlin a.o., 1981, 132–142 | MR

[6] R. G. Downey, “Computability theory and linear orderings”, Handbook of recursive mathematics, v. 2, Stud. Logic Found. Math., 139, Recursive algebra, analysis and combinatorics, eds. Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B.V., Amsterdam, 1998, 823–976 | MR | Zbl

[7] K. Harris, “$\eta$-Representation of sets and degrees”, J. Symb. Log., 73:4 (2008), 1097–1121 | DOI | MR | Zbl

[8] A. M. Kach, D. Turetsky, “Limitwise monotonic functions, sets and degrees on computable domains”, J. Symb. Log., 75:1 (2010), 131–154 | DOI | MR | Zbl

[9] A. N. Frolov, M. V. Zubkov, “Increasing $\eta$-representable degrees”, Math. Log. Q., 55:6 (2009), 633–636 | DOI | MR | Zbl

[10] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv, I”, Algebra i logika, 7:1 (1968), 47–73 | MR

[11] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv, II”, Algebra i logika, 7:4 (1968), 15–47 | MR | Zbl

[12] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv, III”, Algebra i logika, 9:1 (1970), 34–51 | MR | Zbl

[13] M. M. Arslanov, Ierarkhiya Ershova, Spetskurs dlya studentov mekhmata, Kazanskii gos. un-t, Kazan, 2007

[14] M. V. Zubkov, “Odna teorema o silno $\eta$-predstavimykh mnozhestvakh”, Izv. vuzov. Matem., 2009, no. 7, 77–81 | MR | Zbl