Strongly $\eta$-representable degrees and limitwise monotonic functions
Algebra i logika, Tome 50 (2011) no. 4, pp. 504-520

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that each strongly $\eta$-representable degree contains a set that is a range of values for some $\boldsymbol0'$-limitwise monotonic function pseudoincreasing on $\mathbb Q$. Thus we obtain a description of strongly $\eta$-representable degrees in terms of $\boldsymbol0'$-limitwise monotonic functions.
Keywords: $\eta$-representable degree, $\boldsymbol0'$-limitwise monotonic function.
@article{AL_2011_50_4_a3,
     author = {M. V. Zubkov},
     title = {Strongly $\eta$-representable degrees and limitwise monotonic functions},
     journal = {Algebra i logika},
     pages = {504--520},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/}
}
TY  - JOUR
AU  - M. V. Zubkov
TI  - Strongly $\eta$-representable degrees and limitwise monotonic functions
JO  - Algebra i logika
PY  - 2011
SP  - 504
EP  - 520
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/
LA  - ru
ID  - AL_2011_50_4_a3
ER  - 
%0 Journal Article
%A M. V. Zubkov
%T Strongly $\eta$-representable degrees and limitwise monotonic functions
%J Algebra i logika
%D 2011
%P 504-520
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/
%G ru
%F AL_2011_50_4_a3
M. V. Zubkov. Strongly $\eta$-representable degrees and limitwise monotonic functions. Algebra i logika, Tome 50 (2011) no. 4, pp. 504-520. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a3/