Finiteness of a~set of quasivarieties of torsion-free metabelian groups of axiomatic rank~2
Algebra i logika, Tome 50 (2011) no. 3, pp. 281-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal M$ be a quasivariety of all torsion-free groups in which squares of elements are commuting. It is proved that the set of quasivarieties contained in $\mathcal M$ and defined by quasi-identities in two variables is finite.
Keywords: quasivariety, metabelian groups, axiomatic rank.
@article{AL_2011_50_3_a0,
     author = {Yu. A. Avtsinova},
     title = {Finiteness of a~set of quasivarieties of torsion-free metabelian groups of axiomatic rank~2},
     journal = {Algebra i logika},
     pages = {281--302},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Avtsinova
TI  - Finiteness of a~set of quasivarieties of torsion-free metabelian groups of axiomatic rank~2
JO  - Algebra i logika
PY  - 2011
SP  - 281
EP  - 302
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/
LA  - ru
ID  - AL_2011_50_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Avtsinova
%T Finiteness of a~set of quasivarieties of torsion-free metabelian groups of axiomatic rank~2
%J Algebra i logika
%D 2011
%P 281-302
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/
%G ru
%F AL_2011_50_3_a0
Yu. A. Avtsinova. Finiteness of a~set of quasivarieties of torsion-free metabelian groups of axiomatic rank~2. Algebra i logika, Tome 50 (2011) no. 3, pp. 281-302. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/

[1] V. I. Tumanov, Dostatochnye usloviya vlozhimosti svobodnoi reshetki v reshetki kvazimnogoobrazii, preprint No 40, In-t matem. SO AN SSSR, 1988

[2] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[3] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[4] A. Yu. Olshanskii, “Uslovnye tozhdestva v konechnykh gruppakh”, Sib. matem. zh., 15:6 (1974), 1409–1413

[5] A. K. Rumyantsev, “O kvazitozhdestvakh konechnykh grupp”, Algebra i logika, 19:4 (1980), 458–479 | MR | Zbl

[6] A. I. Budkin, “Aksiomaticheskii rang kvazimnogoobraziya, soderzhaschego svobodnuyu razreshimuyu gruppu”, Matem. sb., 112(154):4(8) (1980), 647–655 | MR | Zbl

[7] A. I. Budkin, “Kvazitozhdestva nilpotentnykh grupp i grupp s odnim opredelyayuschim sootnosheniem”, Algebra i logika, 18:2 (1979), 127–136 | MR | Zbl

[8] A. I. Budkin, “O kvazitozhdestvakh v svobodnoi gruppe”, Algebra i logika, 15:1 (1976), 39–52 | MR | Zbl

[9] E. S. Polovnikova, “Ob aksiomaticheskom range kvazimnogoobrazii”, Sib. matem. zh., 40:1 (1999), 167–176 | MR | Zbl

[10] S. V. Lenyuk, “O reshetke kvazimnogoobrazii metabelevykh grupp”, Algebra i logika, 35:5 (1996), 552–561 | MR | Zbl

[11] Yu. A. Avtsinova, “O kvazimnogoobraziyakh metabelevykh grupp bez krucheniya aksiomaticheskogo ranga dva”, Izvestiya AltGU, 2010, no. 1-1(65), 7–10

[12] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[13] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[14] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[15] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[16] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sib. shkola algebry i logiki, Nauchnaya kniga (IDMI), Novosibirsk, 1999 | Zbl