Finiteness of a set of quasivarieties of torsion-free metabelian groups of axiomatic rank 2
Algebra i logika, Tome 50 (2011) no. 3, pp. 281-302

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal M$ be a quasivariety of all torsion-free groups in which squares of elements are commuting. It is proved that the set of quasivarieties contained in $\mathcal M$ and defined by quasi-identities in two variables is finite.
Keywords: quasivariety, metabelian groups, axiomatic rank.
@article{AL_2011_50_3_a0,
     author = {Yu. A. Avtsinova},
     title = {Finiteness of a~set of quasivarieties of torsion-free metabelian groups of axiomatic rank~2},
     journal = {Algebra i logika},
     pages = {281--302},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Avtsinova
TI  - Finiteness of a set of quasivarieties of torsion-free metabelian groups of axiomatic rank 2
JO  - Algebra i logika
PY  - 2011
SP  - 281
EP  - 302
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/
LA  - ru
ID  - AL_2011_50_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Avtsinova
%T Finiteness of a set of quasivarieties of torsion-free metabelian groups of axiomatic rank 2
%J Algebra i logika
%D 2011
%P 281-302
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/
%G ru
%F AL_2011_50_3_a0
Yu. A. Avtsinova. Finiteness of a set of quasivarieties of torsion-free metabelian groups of axiomatic rank 2. Algebra i logika, Tome 50 (2011) no. 3, pp. 281-302. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a0/