New algebraic invariants for definable subsets in universal algebra
Algebra i logika, Tome 50 (2011) no. 2, pp. 209-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems of comparing universal algebras in respect of their conditional algebraic geometries. Such comparisons admit of a quite natural algebraic interpretation. Geometric scales for varieties of algebras constructed based on these relations are a natural tool for classifying the varieties of algebras, discriminator varieties in particular.
Keywords: variety of algebras, conditional algebraic geometries, geometric scales of varieties.
@article{AL_2011_50_2_a3,
     author = {A. G. Pinus},
     title = {New algebraic invariants for definable subsets in universal algebra},
     journal = {Algebra i logika},
     pages = {209--230},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - New algebraic invariants for definable subsets in universal algebra
JO  - Algebra i logika
PY  - 2011
SP  - 209
EP  - 230
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/
LA  - ru
ID  - AL_2011_50_2_a3
ER  - 
%0 Journal Article
%A A. G. Pinus
%T New algebraic invariants for definable subsets in universal algebra
%J Algebra i logika
%D 2011
%P 209-230
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/
%G ru
%F AL_2011_50_2_a3
A. G. Pinus. New algebraic invariants for definable subsets in universal algebra. Algebra i logika, Tome 50 (2011) no. 2, pp. 209-230. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/

[1] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | Zbl

[2] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981

[3] B. I. Plotkin, “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl

[4] B. Plotkin, “Some results and problems related to universal algebraic geometry”, Int. J. Algebra Comput., 17:5/6 (2007), 1133–1164 | DOI | MR | Zbl

[5] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[6] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[7] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione. Papers of the conf. in honour of A. Gaglione's 60th birthday (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[8] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. Foundations”, J. Algebra, (submitted), arXiv: 1002.3562v2[mathAG]

[9] B. Plotkin, G. Zhitomirski, “Some logical invariants of algebras and logical relations between algebras”, Algebra i analiz, 19:5 (2007), 214–245 | MR

[10] B. Plotkin, Unityped algebras, preprint

[11] A. G. Pinus, “Uslovnye termy i ikh prilozheniya v algebre i teorii vychislenii”, Uspekhi matem. n., 56:4(340) (2001), 35–72 | MR | Zbl

[12] A. G. Pinus, Uslovnye termy i ikh primenenie v algebre i teorii vychislenii, Izd-vo NGTU, Novosibirsk, 2002

[13] A. G. Pinus, “Geometricheskie shkaly mnogoobrazii i kvazitozhdestva”, Matem. tr., 12:2 (2009), 160–169 | MR

[14] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York, 1981

[15] V. A. Artamonov, V. N. Salii, L. A. Skornyakov i dr., Obschaya algebra, v. 2, ed. L. A. Skornyakov, Nauka, M., 1991

[16] A. G. Pinus, Osnovy universalnoi algebry, Izd-vo NGTU, Novosibirsk, 2005

[17] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[18] V. V. Bludov, B. V. Gusev, “Geometricheskaya ekvivalentnost grupp”, Tr. In-ta matem. mekhan. UrO RAN, 13, no. 1, 2007, 57–78 | MR

[19] A. G. Pinus, “Ob algebrakh, izomorfnykh lyuboi svoei podalgebre”, Vestnik NGU, 9:3 (2009), 115–119

[20] A. G. Pinus, “O geometricheski blizkikh algebrakh”, Algebra i teoriya modelei, 8, Izd-vo NGTU, Novosibirsk, 2009, 85–95

[21] A. G. Pinus, Boolean constructions in universal algebra, Kluwer Acad. Publ., Dordrecht–Boston–London, 1993 | Zbl

[22] A. G. Pinus, “Bulevy konstruktsii v universalnoi algebre”, Uspekhi matem. n., 47:4(286) (1992), 145–180 | MR | Zbl