New algebraic invariants for definable subsets in universal algebra
Algebra i logika, Tome 50 (2011) no. 2, pp. 209-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems of comparing universal algebras in respect of their conditional algebraic geometries. Such comparisons admit of a quite natural algebraic interpretation. Geometric scales for varieties of algebras constructed based on these relations are a natural tool for classifying the varieties of algebras, discriminator varieties in particular.
Keywords: variety of algebras, conditional algebraic geometries, geometric scales of varieties.
@article{AL_2011_50_2_a3,
     author = {A. G. Pinus},
     title = {New algebraic invariants for definable subsets in universal algebra},
     journal = {Algebra i logika},
     pages = {209--230},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - New algebraic invariants for definable subsets in universal algebra
JO  - Algebra i logika
PY  - 2011
SP  - 209
EP  - 230
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/
LA  - ru
ID  - AL_2011_50_2_a3
ER  - 
%0 Journal Article
%A A. G. Pinus
%T New algebraic invariants for definable subsets in universal algebra
%J Algebra i logika
%D 2011
%P 209-230
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/
%G ru
%F AL_2011_50_2_a3
A. G. Pinus. New algebraic invariants for definable subsets in universal algebra. Algebra i logika, Tome 50 (2011) no. 2, pp. 209-230. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a3/