Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov--Tarski ideal are computable
Algebra i logika, Tome 50 (2011) no. 2, pp. 133-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a computable Boolean algebra of elementary characteristics (1,0,1) which has a computable set of atoms and a computable Ershov–Tarski ideal, but no strongly computable isomorphic copy. Also a description of $\Delta^0_6$-computable Boolean algebras is presented.
Keywords: Boolean algebra, computability, computable model.
@article{AL_2011_50_2_a0,
     author = {M. N. Leontieva},
     title = {Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and {Ershov--Tarski} ideal are computable},
     journal = {Algebra i logika},
     pages = {133--151},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/}
}
TY  - JOUR
AU  - M. N. Leontieva
TI  - Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov--Tarski ideal are computable
JO  - Algebra i logika
PY  - 2011
SP  - 133
EP  - 151
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/
LA  - ru
ID  - AL_2011_50_2_a0
ER  - 
%0 Journal Article
%A M. N. Leontieva
%T Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov--Tarski ideal are computable
%J Algebra i logika
%D 2011
%P 133-151
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/
%G ru
%F AL_2011_50_2_a0
M. N. Leontieva. Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov--Tarski ideal are computable. Algebra i logika, Tome 50 (2011) no. 2, pp. 133-151. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/

[1] S. S. Goncharov, Schëtnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | Zbl

[2] J. D. Monk (ed.), Handbook of Boolean algebras, v. 1–3, North-Holland Publ. Co., Amsterdam etc., 1989 | Zbl

[3] Yu. L. Ershov, “Razreshimost elementarnoi teorii distributivnykh struktur s otnositelnymi dopolneniyami i teorii filtrov”, Algebra i logika, 3:3 (1964), 17–38 | MR | Zbl

[4] S. S. Goncharov, “Ogranichennye teorii konstruktivnykh bulevykh algebr”, Sib. matem. zh., 17:4 (1976), 797–812 | MR | Zbl

[5] P. E. Alaev, “Razreshimye bulevy algebry kharakteristiki (1,0,1)”, Matem. trudy, 7:1 (2004), 3–12 | MR | Zbl

[6] V. N. Vlasov, “Konstruktiviziruemost bulevykh algebr elementarnoi kharakteristiki (1,0,1)”, Algebra i logika, 37:5 (1998), 499–521 | MR | Zbl

[7] M. N. Leonteva, “Bulevy algebry elementarnoi kharakteristiki (1,0,1) s vychislimymi mnozhestvom atomov i idealom atomnykh elementov”, Vestn. Novosibirskogo gos. un-ta, cer. matem., mekh., inform., 10:1 (2010), 65–69

[8] P. E. Alaev, “Vychislimye odnorodnye bulevy algebry i odna metateorema”, Algebra i logika, 43:2 (2004), 133–158 | MR | Zbl

[9] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980

[10] R. L. Vaught, Topics in the theory of arithmetical classes and Boolean algebras, Ph. D. Thesis, Univ. California, Berkeley, 1954

[11] P. E. Alaev, “Giperarifmeticheskie bulevy algebry s vydelennym idealom”, Sib. matem. zh., 45:5 (2004), 963–976 | MR | Zbl

[12] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR