Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov–Tarski ideal are computable
Algebra i logika, Tome 50 (2011) no. 2, pp. 133-151

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a computable Boolean algebra of elementary characteristics (1,0,1) which has a computable set of atoms and a computable Ershov–Tarski ideal, but no strongly computable isomorphic copy. Also a description of $\Delta^0_6$-computable Boolean algebras is presented.
Keywords: Boolean algebra, computability, computable model.
@article{AL_2011_50_2_a0,
     author = {M. N. Leontieva},
     title = {Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and {Ershov{\textendash}Tarski} ideal are computable},
     journal = {Algebra i logika},
     pages = {133--151},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/}
}
TY  - JOUR
AU  - M. N. Leontieva
TI  - Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov–Tarski ideal are computable
JO  - Algebra i logika
PY  - 2011
SP  - 133
EP  - 151
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/
LA  - ru
ID  - AL_2011_50_2_a0
ER  - 
%0 Journal Article
%A M. N. Leontieva
%T Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov–Tarski ideal are computable
%J Algebra i logika
%D 2011
%P 133-151
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/
%G ru
%F AL_2011_50_2_a0
M. N. Leontieva. Boolean algebras of elementary characteristic (1,0,1) whose set of atoms and Ershov–Tarski ideal are computable. Algebra i logika, Tome 50 (2011) no. 2, pp. 133-151. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a0/