Nilpotent length of a~finite group admitting a~Frobenius group of automorphisms with fixed-point-free kernel
Algebra i logika, Tome 49 (2010) no. 6, pp. 819-833.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a finite group $G$ admits a Frobenius group $FH$ of automorphisms with kernel $F$ and complement $H$ such that the fixed-point subgroup of $F$ is trivial, i.e., $C_G(F)=1$, and the orders of $G$ and $H$ are coprime. It is proved that the nilpotent length of $G$ is equal to the nilpotent length of $C_G(H)$ and the Fitting series of the fixed-point subgroup $C_G(H)$ coincides with a series obtained by taking intersections of $C_G(H)$ with the Fitting series of $G$.
Mots-clés : Frobenius group, automorphism, soluble group
Keywords: finite group, nilpotent length, Fitting series.
@article{AL_2010_49_6_a6,
     author = {E. I. Khukhro},
     title = {Nilpotent length of a~finite group admitting {a~Frobenius} group of automorphisms with fixed-point-free kernel},
     journal = {Algebra i logika},
     pages = {819--833},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a6/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - Nilpotent length of a~finite group admitting a~Frobenius group of automorphisms with fixed-point-free kernel
JO  - Algebra i logika
PY  - 2010
SP  - 819
EP  - 833
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a6/
LA  - ru
ID  - AL_2010_49_6_a6
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T Nilpotent length of a~finite group admitting a~Frobenius group of automorphisms with fixed-point-free kernel
%J Algebra i logika
%D 2010
%P 819-833
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a6/
%G ru
%F AL_2010_49_6_a6
E. I. Khukhro. Nilpotent length of a~finite group admitting a~Frobenius group of automorphisms with fixed-point-free kernel. Algebra i logika, Tome 49 (2010) no. 6, pp. 819-833. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a6/

[1] V. V. Belyaev, B. Khartli, “Tsentralizatory konechnykh nilpotentnykh podgrupp v lokalno konechnykh gruppakh”, Algebra i logika, 35:4 (1996), 389–410 | MR | Zbl

[2] E. I. Khukhro, N. Y. Makarenko, P. Shumyatsky, “Frobenius groups of automorphisms and their fixed points”, Europ. J. Math., 2010, (submitted)

[3] N. Yu. Makarenko, E. I. Khukhro, P. Shumyatskii, “Nepodvizhnye tochki frobeniusovykh grupp avtomorfizmov”, Dokl. RAN, 2010, (sdano v zhurnal)

[4] E. I. Khukhro, “Graded Lie rings with many commuting components and an application to 2-Frobenius groups”, Bull. Lond. Math. Soc., 40:5 (2008) | DOI | MR | Zbl

[5] N. Y. Makarenko, P. Shumyatsky, “Frobenius groups as groups of automorphisms”, Proc. Am. Math. Soc., 138:10 (2010), 3425–3436 | DOI | MR | Zbl

[6] P. Shumyatsky, “On the exponent of a finite group with an automorphism group of order twelve”, J. Algebra, 2011 (to appear)

[7] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[8] J. G. Thompson, “Automorphisms of solvable groups”, J. Algebra, 1 (1964), 259–267 | DOI | MR | Zbl

[9] H. Kurzweil, “$p$-Automorphismen von auflösbaren $p'$-Gruppen”, Math. Z., 120:4 (1971), 326–354 | DOI | MR | Zbl

[10] A. Turull, “Fitting height of groups and of fixed points”, J. Algebra, 86 (1984), 555–566 | DOI | MR | Zbl

[11] E. C. Dade, “Carter subgroups and Fitting heights of finite solvable groups”, Ill. J. Math., 13 (1969), 449–514 | MR

[12] S. D. Bell, B. Hartley, “A note on fixed-point-free actions of finite groups”, Q. J. Math. Oxf. II Ser., 41:162 (1990), 127–130 | DOI | MR | Zbl

[13] E. I. Khukhro, “Nepodvizhnye tochki dopolnenii frobeniusovykh grupp avtomorfizmov”, Sib. matem. zh., 51:3 (2010), 694–699 | MR | Zbl

[14] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, Fizmatlit, M., 1969 | MR