Categorical Horn classes.~2
Algebra i logika, Tome 49 (2010) no. 6, pp. 782-802.

Voir la notice de l'article provenant de la source Math-Net.Ru

We come up with a quite efficient characterization of uncountably categorical Horn classes, which, in particular, implies that the classes in question are model complete. It is also worth mentioning the following results: quantifier elimination down to primitive formulas, a description of groups interpretable in models of categorical Horn theories, and a characterization of groups interpretable in models of almost strongly minimal Horn theories.
Keywords: categorical Horn class, model completeness, quantifier elimination down to primitive formulas, interpretability.
@article{AL_2010_49_6_a4,
     author = {E. A. Palyutin},
     title = {Categorical {Horn} classes.~2},
     journal = {Algebra i logika},
     pages = {782--802},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a4/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Categorical Horn classes.~2
JO  - Algebra i logika
PY  - 2010
SP  - 782
EP  - 802
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a4/
LA  - ru
ID  - AL_2010_49_6_a4
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Categorical Horn classes.~2
%J Algebra i logika
%D 2010
%P 782-802
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a4/
%G ru
%F AL_2010_49_6_a4
E. A. Palyutin. Categorical Horn classes.~2. Algebra i logika, Tome 49 (2010) no. 6, pp. 782-802. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a4/

[1] E. A. Palyutin, “Kategorichnye khornovy klassy, 1”, Algebra i logika, 19:5 (1980), 582–614 | MR | Zbl

[2] E. A. Palyutin, “Opisanie kategorichnykh kvazimnogoobrazii”, Algebra i logika, 14:2 (1975), 145–185 | MR | Zbl

[3] E. A. Palyutin, Spektr i struktura modelei khornovykh teorii, Dokt. diss., Novosibirsk, 1986, 314 pp.

[4] S. Shelah, “Stability, f.c.p., and superstability; model theoretic properties of formulas in first order theory”, Ann. Math. Logic, 3:3 (1971), 271–362 | DOI | MR | Zbl

[5] E. A. Palyutin, S. S. Starchenko, “Khornovy teorii s nemaksimalnym spektrom”, Teoriya modelei i ee primeneniya, Trudy In-ta matem. SO AN SSSR, 8, Nauka, Novosibirsk, 1988, 108–162 | MR

[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 2-e izd., Nauka, M., 1987 | MR | Zbl

[7] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl