Toward a~theorem of Douady
Algebra i logika, Tome 49 (2010) no. 6, pp. 757-765.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem of Douady says that the absolute Galois group of a rational function field $F(x)$ in one variable over an algebraically closed field $F$ of characteristic 0 is a free profinite group. A new method is proposed to extend Douady's theorem from the case of the complex number field $F=\mathbb C$ to the case of an arbitrary field.
Mots-clés : absolute Galois group
Keywords: profinite group, field.
@article{AL_2010_49_6_a2,
     author = {Yu. L. Ershov},
     title = {Toward a~theorem of {Douady}},
     journal = {Algebra i logika},
     pages = {757--765},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a2/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Toward a~theorem of Douady
JO  - Algebra i logika
PY  - 2010
SP  - 757
EP  - 765
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a2/
LA  - ru
ID  - AL_2010_49_6_a2
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Toward a~theorem of Douady
%J Algebra i logika
%D 2010
%P 757-765
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a2/
%G ru
%F AL_2010_49_6_a2
Yu. L. Ershov. Toward a~theorem of Douady. Algebra i logika, Tome 49 (2010) no. 6, pp. 757-765. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a2/

[1] A. Douady, “Détermination d'un groups de Galois”, C. R. Acad. Sci. Paris, 258 (1964), 5305–5308 | MR | Zbl

[2] L. van den Dries, P. Ribenboim, “Application de la theórie des modeles aux groupes de Galois de corps de fonctions”, C. R. Acad. Sci. Paris Sér. A, 288 (1979), 789–792 | MR | Zbl

[3] L. van den Dries, P. Ribenboim, “An application of Tarskiś principle to absolute Galois groups of function fields”, Ann. Pure Appl. Logic, 33 (1987), 83–107 | DOI | MR | Zbl

[4] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000

[5] W. Krull, J. Neukirch, “Die Struktur der absoluten Galoisgrouppe über dem Körper $\mathbb R(t)$”, Math. Ann., 193 (1971), 167–209 | DOI | MR

[6] Yu. L. Ershov, “Nerazreshimost nekotorykh polei”, Dokl. AN SSSR, 161:1 (1965), 27–29 | Zbl

[7] L. Ribes, P. Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 40, Springer, Berlin, 2000 | MR | Zbl