Keywords: profinite group, field.
@article{AL_2010_49_6_a2,
author = {Yu. L. Ershov},
title = {Toward a~theorem of {Douady}},
journal = {Algebra i logika},
pages = {757--765},
year = {2010},
volume = {49},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a2/}
}
Yu. L. Ershov. Toward a theorem of Douady. Algebra i logika, Tome 49 (2010) no. 6, pp. 757-765. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a2/
[1] A. Douady, “Détermination d'un groups de Galois”, C. R. Acad. Sci. Paris, 258 (1964), 5305–5308 | MR | Zbl
[2] L. van den Dries, P. Ribenboim, “Application de la theórie des modeles aux groupes de Galois de corps de fonctions”, C. R. Acad. Sci. Paris Sér. A, 288 (1979), 789–792 | MR | Zbl
[3] L. van den Dries, P. Ribenboim, “An application of Tarskiś principle to absolute Galois groups of function fields”, Ann. Pure Appl. Logic, 33 (1987), 83–107 | DOI | MR | Zbl
[4] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000
[5] W. Krull, J. Neukirch, “Die Struktur der absoluten Galoisgrouppe über dem Körper $\mathbb R(t)$”, Math. Ann., 193 (1971), 167–209 | DOI | MR
[6] Yu. L. Ershov, “Nerazreshimost nekotorykh polei”, Dokl. AN SSSR, 161:1 (1965), 27–29 | Zbl
[7] L. Ribes, P. Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 40, Springer, Berlin, 2000 | MR | Zbl