Algebraic geometry over algebraic structures. IV. Equational domains and codomains
Algebra i logika, Tome 49 (2010) no. 6, pp. 715-756

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study equational domains and equational codomains. Informally, an equational domain is an algebra every finite union of algebraic sets over which is an algebraic set; an equational codomain is an algebra every proper finite union of algebraic sets over which is not an algebraic set.
Keywords: algebra, algebraic set, universal algebraic geometry, disjunctive equation, discriminating algebra, codiscriminating algebra.
Mots-clés : equational domain, equational codomain
@article{AL_2010_49_6_a1,
     author = {\'E Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
     title = {Algebraic geometry over algebraic {structures.~IV.} {Equational} domains and codomains},
     journal = {Algebra i logika},
     pages = {715--756},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a1/}
}
TY  - JOUR
AU  - É Yu. Daniyarova
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over algebraic structures. IV. Equational domains and codomains
JO  - Algebra i logika
PY  - 2010
SP  - 715
EP  - 756
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a1/
LA  - ru
ID  - AL_2010_49_6_a1
ER  - 
%0 Journal Article
%A É Yu. Daniyarova
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Algebraic geometry over algebraic structures. IV. Equational domains and codomains
%J Algebra i logika
%D 2010
%P 715-756
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a1/
%G ru
%F AL_2010_49_6_a1
É Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic geometry over algebraic structures. IV. Equational domains and codomains. Algebra i logika, Tome 49 (2010) no. 6, pp. 715-756. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a1/