An $\mathfrak X$-crown of a~finite soluble group
Algebra i logika, Tome 49 (2010) no. 5, pp. 591-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite soluble group and $\Phi_\mathfrak X(G)$ an intersection of all those maximal subgroups $M$ of $G$ for which $G/\mathrm{Core}_G(M)\in\mathfrak X$. We look at properties of a section $F(G/\Phi_\mathfrak X(G))$, which is definable for any class $\mathfrak X$ of primitive groups and is called an $\mathfrak X$-crown of a group $G$. Of particular importance is the case where all groups in $\mathfrak X$ have equal socle length.
Keywords: finite soluble group, crown, prefrattini subgroup.
@article{AL_2010_49_5_a1,
     author = {S. F. Kamornikov and L. A. Shemetkov},
     title = {An $\mathfrak X$-crown of a~finite soluble group},
     journal = {Algebra i logika},
     pages = {591--614},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_5_a1/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - L. A. Shemetkov
TI  - An $\mathfrak X$-crown of a~finite soluble group
JO  - Algebra i logika
PY  - 2010
SP  - 591
EP  - 614
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_5_a1/
LA  - ru
ID  - AL_2010_49_5_a1
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A L. A. Shemetkov
%T An $\mathfrak X$-crown of a~finite soluble group
%J Algebra i logika
%D 2010
%P 591-614
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_5_a1/
%G ru
%F AL_2010_49_5_a1
S. F. Kamornikov; L. A. Shemetkov. An $\mathfrak X$-crown of a~finite soluble group. Algebra i logika, Tome 49 (2010) no. 5, pp. 591-614. http://geodesic.mathdoc.fr/item/AL_2010_49_5_a1/

[1] W. Gaschütz, “Praefrattinigruppen”, Arch. Math., 13:3 (1962), 418–426 | DOI | MR | Zbl

[2] T. Hawkes, “Analogues of prefrattini subgroups”, Proc. int. conf. Theory of groups (Australian Nat. Univ., Canberra, 1965), Gordon and Breach, New York–London–Paris, 1967, 145–150 | MR

[3] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR | Zbl

[4] S. F. Kamornikov, “O prefrattinievykh podgruppakh konechnykh razreshimykh grupp”, Sib. matem. zh., 49:6 (2008), 1310–1318 | MR

[5] K. Doerk, T. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, W. de Gruyter, Berlin etc., 1992 | MR | Zbl

[6] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[7] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarus. navuka, Minsk, 2003

[8] A. Ballester-Bolinches, L. M. Ezquerro, Classes of finite groups, Math. Appl. (Springer), 584, Springer-Verlag, Dordrecht, 2006 | MR | Zbl