Base fields of $\mathrm{csp}$-rings
Algebra i logika, Tome 49 (2010) no. 4, pp. 555-565

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into the question of which fields may serve as base fields for $\mathrm{csp}$-rings. It is proved that every algebraic extension of a field $\mathbf Q$ is the base field of some $\mathrm{csp}$-ring. Also it shown that in studying base fields, we may confine ourselves to treating only $\mathrm{csp}$-rings of idempotent cocharacteristic, or only regular $\mathrm{csp}$-rings.
Keywords: $\mathrm{csp}$-ring, base field.
@article{AL_2010_49_4_a5,
     author = {E. A. Timoshenko},
     title = {Base fields of $\mathrm{csp}$-rings},
     journal = {Algebra i logika},
     pages = {555--565},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a5/}
}
TY  - JOUR
AU  - E. A. Timoshenko
TI  - Base fields of $\mathrm{csp}$-rings
JO  - Algebra i logika
PY  - 2010
SP  - 555
EP  - 565
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a5/
LA  - ru
ID  - AL_2010_49_4_a5
ER  - 
%0 Journal Article
%A E. A. Timoshenko
%T Base fields of $\mathrm{csp}$-rings
%J Algebra i logika
%D 2010
%P 555-565
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a5/
%G ru
%F AL_2010_49_4_a5
E. A. Timoshenko. Base fields of $\mathrm{csp}$-rings. Algebra i logika, Tome 49 (2010) no. 4, pp. 555-565. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a5/