$S$-embedded subgroups of finite groups
Algebra i logika, Tome 49 (2010) no. 4, pp. 433-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of $G$ is said to be $S$-embedded in $G$ if $G$ has a normal subgroup $N$ such that $HN$ is $s$-permutable in $G$ and $H\cap N\le H_{sG}$, where $H_{sG}$ is the largest $s$-permutable subgroup of $G$ contained in $H$. $S$-embedded subgroups are used to give novel characterizations for some classes of groups. New results are obtained and a number of previously known ones are generalized.
Keywords: finite group, $S$-embedded subgroup, supersoluble group, $p$-nilpotent group.
Mots-clés : permutable group
@article{AL_2010_49_4_a0,
     author = {Wenbin Guo and Yi Lu and Wenjuan Niu},
     title = {$S$-embedded subgroups of finite groups},
     journal = {Algebra i logika},
     pages = {433--450},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a0/}
}
TY  - JOUR
AU  - Wenbin Guo
AU  - Yi Lu
AU  - Wenjuan Niu
TI  - $S$-embedded subgroups of finite groups
JO  - Algebra i logika
PY  - 2010
SP  - 433
EP  - 450
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a0/
LA  - ru
ID  - AL_2010_49_4_a0
ER  - 
%0 Journal Article
%A Wenbin Guo
%A Yi Lu
%A Wenjuan Niu
%T $S$-embedded subgroups of finite groups
%J Algebra i logika
%D 2010
%P 433-450
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a0/
%G ru
%F AL_2010_49_4_a0
Wenbin Guo; Yi Lu; Wenjuan Niu. $S$-embedded subgroups of finite groups. Algebra i logika, Tome 49 (2010) no. 4, pp. 433-450. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a0/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[2] W. Guo, The theory of classes of groups, Math. Appl. (Dordrecht), 505, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing, 2000 | MR | Zbl

[3] O. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[4] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82:2 (1963), 125–132 | DOI | MR | Zbl

[5] Y. Wang $C$-normality groups and its properties, J. Algebra, 180:3 (1996), 954–965 | DOI | MR | Zbl

[6] W. Guo, Y. Wang, L. Shi, “Nearly $s$-normal subgroups of a finite group”, J. Algebra Discrete Struct., 6:2 (2008), 95–106 | MR | Zbl

[7] K. Doerk, T. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, W. de Gruyter, Berlin etc., 1992 | MR | Zbl

[8] W. Guo, K. P. Shum, A. N. Skiba, “On solubility and supersolubility of some classes of finite groups”, Sci. China Ser. A, 52:2 (2009), 272–286 | DOI | MR | Zbl

[9] A. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315:1 (2007), 192–209 | DOI | MR | Zbl

[10] H. Wielandt, Subnormal subgroups and permutation groups, Lecture given at the Ohio State Univ., Columbus, Ohio, 1971

[11] V. Go, A. N. Skiba, K. P. Sham, “$X$-perestanovochnye podgruppy”, Sib. matem. zh., 48:4 (2007), 742–759 | MR | Zbl

[12] W. Guo, “On $F$-supplemented subgroups of finite groups”, Manusc. math., 127:2 (2008), 139–150 | DOI | MR | Zbl

[13] D. J. S. Robinson, A course in the theory of groups, Grad. Texts Math., 80, Springer-Verlag, New York etc., 1982 | MR | Zbl

[14] B. Huppert, Endliche Gruppen I. Nachdr. d. 1. Aufl., Grundlehren mathem. Wiss., 134, Springer-Verlag, Berlin etc., 1979 | MR | Zbl

[15] S. Srinivasan, “Two sufficient conditions for supersolubility of finite groups”, Isr. J. Math., 35:3 (1980), 210–214 | DOI | MR | Zbl

[16] W. Guo, K. P. Shum, A. N. Skiba, “$G$-covering subgroup systems for the class of supersoluble and nilpotent groups”, Isr. J. Math., 138 (2003), 125–138 | DOI | MR | Zbl

[17] A. A. Alsheik, “Finite groups with given $c$-permutable subgroups”, Algebra Discrete Math., 2004, no. 2, 9–16 | MR | Zbl

[18] D. Li, X. Guo, “The influence of $c$-normality of subgroups on the structure of finite groups”, J. Pure Appl. Algebra, 150:1 (2000), 53–60 | DOI | MR | Zbl

[19] M. Asaad, M. Ramadan, A. Shaalan, “Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group”, Arch Math., 56:6 (1991), 521–527 | DOI | MR | Zbl

[20] M. Asaad, “On maximal subgroups of Sylow subgroups of finite groups”, Commun. Algebra, 26:11 (1998), 3647–3652 | DOI | MR | Zbl

[21] S. Li, J. Lu, W. Meng, “Some sufficient condictions for supersolubility of finite groups”, Guangxi Sci., 13 (2006), 241–244

[22] X. Guo, K. P. Shum, “On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups”, Arch Math., 80:6 (2003), 561–569 | DOI | MR | Zbl