Periodic groups acting freely on Abelian groups
Algebra i logika, Tome 49 (2010) no. 3, pp. 379-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe $\{2,3\}$-groups without elements of order 27, acting freely on an Abelian group. In particular, it is proved that such groups are locally finite.
Keywords: periodic group, Abelian group, local finiteness.
@article{AL_2010_49_3_a4,
     author = {D. V. Lytkina},
     title = {Periodic groups acting freely on {Abelian} groups},
     journal = {Algebra i logika},
     pages = {379--387},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_3_a4/}
}
TY  - JOUR
AU  - D. V. Lytkina
TI  - Periodic groups acting freely on Abelian groups
JO  - Algebra i logika
PY  - 2010
SP  - 379
EP  - 387
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_3_a4/
LA  - ru
ID  - AL_2010_49_3_a4
ER  - 
%0 Journal Article
%A D. V. Lytkina
%T Periodic groups acting freely on Abelian groups
%J Algebra i logika
%D 2010
%P 379-387
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_3_a4/
%G ru
%F AL_2010_49_3_a4
D. V. Lytkina. Periodic groups acting freely on Abelian groups. Algebra i logika, Tome 49 (2010) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/AL_2010_49_3_a4/

[1] E. Jabara, P. Mayr, “Frobenius complements of exponent dividing $2^m\cdot9$”, Forum math., 21:2 (2009), 217–220 | DOI | MR | Zbl

[2] D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. matem. zh., 49:2 (2008), 394–399 | MR | Zbl

[3] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl