Periodic groups acting freely on Abelian groups
Algebra i logika, Tome 49 (2010) no. 3, pp. 379-387
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe $\{2,3\}$-groups without elements of order 27, acting freely on an Abelian group. In particular, it is proved that such groups are locally finite.
Keywords:
periodic group, Abelian group, local finiteness.
@article{AL_2010_49_3_a4,
author = {D. V. Lytkina},
title = {Periodic groups acting freely on {Abelian} groups},
journal = {Algebra i logika},
pages = {379--387},
year = {2010},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2010_49_3_a4/}
}
D. V. Lytkina. Periodic groups acting freely on Abelian groups. Algebra i logika, Tome 49 (2010) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/AL_2010_49_3_a4/
[1] E. Jabara, P. Mayr, “Frobenius complements of exponent dividing $2^m\cdot9$”, Forum math., 21:2 (2009), 217–220 | DOI | MR | Zbl
[2] D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. matem. zh., 49:2 (2008), 394–399 | MR | Zbl
[3] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl