Subgroups of finite index in Baumslag--Solitar groups
Algebra i logika, Tome 49 (2010) no. 3, pp. 331-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description is given for all subgroups of index $n$ in Baumslag–Solitar groups $BS(p,q)$.
Keywords: two-generator one-relator non-Hopfian group, Baumslag–Solitar group.
@article{AL_2010_49_3_a1,
     author = {F. A. Dudkin},
     title = {Subgroups of finite index in {Baumslag--Solitar} groups},
     journal = {Algebra i logika},
     pages = {331--345},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_3_a1/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Subgroups of finite index in Baumslag--Solitar groups
JO  - Algebra i logika
PY  - 2010
SP  - 331
EP  - 345
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_3_a1/
LA  - ru
ID  - AL_2010_49_3_a1
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Subgroups of finite index in Baumslag--Solitar groups
%J Algebra i logika
%D 2010
%P 331-345
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_3_a1/
%G ru
%F AL_2010_49_3_a1
F. A. Dudkin. Subgroups of finite index in Baumslag--Solitar groups. Algebra i logika, Tome 49 (2010) no. 3, pp. 331-345. http://geodesic.mathdoc.fr/item/AL_2010_49_3_a1/

[1] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Am. Math. Soc., 68:3 (1962), 199–201 | DOI | MR | Zbl

[2] E. Gelman, “Subgroup growth of Baumslag-Solitar groups”, J. Group Theory, 8:6 (2005), 801–806 | DOI | MR | Zbl

[3] J. O. Button, “A formula for the normal subgroup growth of Baumslag-Solitar groups”, J. Group Theory, 11:6 (2008), 879–884 | DOI | MR | Zbl

[4] O. V. Bogopolskii, Vvedenie v teoriyu grupp, In-t kompyut. issled., Moskva–Izhevsk, 2002

[5] F. A. Dudkin, “Podgruppy grupp Baumslaga-Solitera”, Algebra i logika, 48:1 (2009), 3–30 | MR

[6] A. Mednykh, “Counting conjugacy classes of subgroups in a finitely generated group”, J. Algebra, 320:6 (2008), 2209–2217 | DOI | MR | Zbl