Computable ideals in $I$-algebras
Algebra i logika, Tome 49 (2010) no. 2, pp. 157-174

Voir la notice de l'article provenant de la source Math-Net.Ru

We give algebraic descriptions of relatively intrinsically computable ideals in $I$-algebras (Boolean algebras with a finite number of distinguished ideals) and of intrinsically computable ideals for the case of two distinguished ideals in the language of $I$-algebras.
Keywords: Boolean algebra with finite number of distinguished ideals, intrinsically computable ideal, relatively intrinsically computable ideal.
@article{AL_2010_49_2_a0,
     author = {P. E. Alaev},
     title = {Computable ideals in $I$-algebras},
     journal = {Algebra i logika},
     pages = {157--174},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_2_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Computable ideals in $I$-algebras
JO  - Algebra i logika
PY  - 2010
SP  - 157
EP  - 174
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_2_a0/
LA  - ru
ID  - AL_2010_49_2_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Computable ideals in $I$-algebras
%J Algebra i logika
%D 2010
%P 157-174
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_2_a0/
%G ru
%F AL_2010_49_2_a0
P. E. Alaev. Computable ideals in $I$-algebras. Algebra i logika, Tome 49 (2010) no. 2, pp. 157-174. http://geodesic.mathdoc.fr/item/AL_2010_49_2_a0/