Noncommutative Jordan superalgebras of degree $n>2$
Algebra i logika, Tome 49 (2010) no. 1, pp. 26-59
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree $n>2$, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree $n>1$ is simple. Modulo a “nodal” case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Keywords:
noncommutative Jordan superalgebra, coordinatization theorem.
@article{AL_2010_49_1_a2,
author = {A. P. Pozhidaev and I. P. Shestakov},
title = {Noncommutative {Jordan} superalgebras of degree $n>2$},
journal = {Algebra i logika},
pages = {26--59},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2010_49_1_a2/}
}
A. P. Pozhidaev; I. P. Shestakov. Noncommutative Jordan superalgebras of degree $n>2$. Algebra i logika, Tome 49 (2010) no. 1, pp. 26-59. http://geodesic.mathdoc.fr/item/AL_2010_49_1_a2/