Subfields of the adele ring
Algebra i logika, Tome 48 (2009) no. 6, pp. 741-753.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a natural one-to-one correspondence between immediate extensions of a Dedekind ring and subfields of its ring of adeles containing its ring of fractions. As a consequence of the existence theorems for immediate extensions proved previously, we state that $e$-closed fields within the class of countable subfields of the classical adele ring are surprising extensions of the field of rationals.
Keywords: adele ring, Dedekind ring, immediate extension, surprising extension of field of rationals.
@article{AL_2009_48_6_a2,
     author = {Yu. L. Ershov},
     title = {Subfields of the adele ring},
     journal = {Algebra i logika},
     pages = {741--753},
     publisher = {mathdoc},
     volume = {48},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_6_a2/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Subfields of the adele ring
JO  - Algebra i logika
PY  - 2009
SP  - 741
EP  - 753
VL  - 48
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_6_a2/
LA  - ru
ID  - AL_2009_48_6_a2
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Subfields of the adele ring
%J Algebra i logika
%D 2009
%P 741-753
%V 48
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_6_a2/
%G ru
%F AL_2009_48_6_a2
Yu. L. Ershov. Subfields of the adele ring. Algebra i logika, Tome 48 (2009) no. 6, pp. 741-753. http://geodesic.mathdoc.fr/item/AL_2009_48_6_a2/

[1] Dzh. Kascels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[2] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000

[3] G. J. Janusz, Algebraic number fields, 2-nd ed., Am. Math. Soc., 1996 ; G. Dzh. Yanush, Algebraicheskie chislovye polya, Nauchnaya kniga, Novosibirsk, 2001 | MR

[4] Yu. L. Ershov, “Neposredstvennye rasshireniya pryuferovykh kolets”, Algebra i logika, 40:3 (2001), 262–289 | MR | Zbl

[5] Yu. L. Ershov, “Ob udivitelnykh rasshireniyakh polya ratsionalnykh chisel”, Dokl. RAN, 373:1 (2000), 15–16 | MR | Zbl

[6] Yu. L. Ershov, “Preduporyadochennye kratno normirovannye polya”, Dokl. RAN, 382:5 (2002), 583–588 | MR | Zbl

[7] Yu. L. Ershov, “Khoroshie rasshireniya i globalnaya teoriya polei klassov”, Dokl. RAN, 388:2 (2003), 155–158 | MR | Zbl

[8] S. Lang, A. Weil, “Number of points of varieties in finite fields”, Am. J. Math., 76:4 (1954), 819–827 | DOI | MR | Zbl