Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces
Algebra i logika, Tome 48 (2009) no. 5, pp. 580-605.

Voir la notice de l'article provenant de la source Math-Net.Ru

The majority of categories used in denotational semantics are topological in nature. One of these is the category of stably compact spaces and continuous maps. Previously, Eilenberg–Moore algebras were studied for the extended probabilistic powerdomain monad over the category of ordered compact spaces $X$ and order-preserving continuous maps in the sense of Nachbin. Appropriate algebras were characterized as compact convex subsets of ordered locally convex topological vector spaces. In so doing, functional analytic tools were involved. The main accomplishments of this paper are as follows: the result mentioned is re-proved and is extended to the subprobabilistic case; topological methods are developed which defy an appeal to functional analysis; a more topological approach might be useful for the stably compact case; algebras of the (sub)probabilistic powerdomain monad inherit barycentric operations that satisfy the same equational laws as those in vector spaces. Also, it is shown that it is convenient first to embed these abstract convex sets in abstract cones, which are simpler to work with. Lastly, we state embedding theorems for abstract ordered locally compact cones and compact convex sets in ordered topological vector spaces.
Keywords: Eilenberg–Moore algebras, ordered topological vector space.
@article{AL_2009_48_5_a2,
     author = {K. Keimel},
     title = {Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces},
     journal = {Algebra i logika},
     pages = {580--605},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/}
}
TY  - JOUR
AU  - K. Keimel
TI  - Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces
JO  - Algebra i logika
PY  - 2009
SP  - 580
EP  - 605
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/
LA  - ru
ID  - AL_2009_48_5_a2
ER  - 
%0 Journal Article
%A K. Keimel
%T Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces
%J Algebra i logika
%D 2009
%P 580-605
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/
%G ru
%F AL_2009_48_5_a2
K. Keimel. Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces. Algebra i logika, Tome 48 (2009) no. 5, pp. 580-605. http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/

[1] N. Benton, J. Hughes, E. Moggi, “Monads and effects”, Applied semantics, Advanced lectures Int. summer school, APPSEM 2000 (Caminha, Portugal, Sept. 9–15, 2000), Lect. Notes Comput. Sci., 2395, eds. Gilles Barthe et al., Springer-Verlag, Berlin, 2002, 42–122 | MR | Zbl

[2] B. Cohen, M. Escardó, K. Keimel, “The extended probabilistic powerdomain monad over stably compact spaces”, Theory and applications of models of computation, Proc. Third int. conf., TAMC 2006 (Beijing, China, May 15–20, 2006), Lect. Notes Comput. Sci., 3959, eds. Jin-Yi Cai et al., Springer-Verlag, Berlin, 2006, 566–575 | MR | Zbl

[3] K. Keimel, “The monad of probability measures over compact ordered spaces and its Eilenberg–Moore algebras”, Topology Appl., 156:2 (2008), 227–239 | DOI | MR | Zbl

[4] L. Nachbin, Topology and order, transl. from the Portuguese by L. Bechtolsheim, Van Nostrand Math. Stud., 4, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–New York–London, 1965 ; Reprint of the 1965 edition, Robert E. Kreiger Publ. Co., Huntington, NY, 1976 | MR | MR

[5] D. A. Edwards, “On the existence of probability measures with given marginals”, Ann. Inst. Fourier, 28:4 (1978), 53–78 | MR | Zbl

[6] T. Swirszcz, “Monadic functors and convexity”, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 22 (1974), 39–42 | MR | Zbl

[7] Z. Semadeni, Monads and their Eilenberg–Moore algebras in functional analysis, Queen's Papers Pure Appl. Math., 33, Queen's Univ., Kingston, Ontario, Canada, 1973 | MR | Zbl

[8] J. D. Lawson, “Embeddings of compact convex sets and locally compact cones”, Pac. J. Math., 66 (1976), 443–453 | MR | Zbl

[9] J. D. Lawson, B. Madison, “On congruences and cones”, Math. Z., 120 (1971), 18–24 | DOI | MR | Zbl

[10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Encycl. Math. Appl., 93, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[11] S. Mac Lane, Categories for the working mathematician, 2nd ed., Grad. Texts Math., 5, Springer-Verlag, New York, NY, 1998 | MR

[12] N. Bourbaki, Éléments de mathématique. Fasc. II. Premiere partie. Livre III: Topologie generale. Chap. 1: Structures topologiques. Chap. 2: Structures uniformes, 4iéme ed., Hermann Cie, Paris, 1965 | MR | Zbl

[13] K. Keimel, “Topological cones: functional analysis in a $T_0$-setting”, Semigroup Forum, 77:1 (2008), 109–142 | DOI | MR | Zbl

[14] W. D. Neumann, “On the quasivariety of convex subsets of affine spaces”, Arch. Math., 21 (1970), 11–16 | DOI | MR | Zbl

[15] H. H. Schaefer, Topological vector spaces, Macmillan Ser. Adv. Math. Theor. Phys., The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966 | MR | Zbl

[16] E. M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer-Verlag, 1971 | MR | Zbl

[17] M. Alvarez-Manilla, A. Jung, K. Keimel, “The probabilistic powerdomain for stably compact spaces”, Theor. Comput. Sci., 328:3 (2004), 221–244 | DOI | MR | Zbl