Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2009_48_5_a2, author = {K. Keimel}, title = {Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces}, journal = {Algebra i logika}, pages = {580--605}, publisher = {mathdoc}, volume = {48}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/} }
TY - JOUR AU - K. Keimel TI - Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces JO - Algebra i logika PY - 2009 SP - 580 EP - 605 VL - 48 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/ LA - ru ID - AL_2009_48_5_a2 ER -
K. Keimel. Abstract ordered compact convex sets and algebras of the (sub)probabilistic powerdomain monad over ordered compact spaces. Algebra i logika, Tome 48 (2009) no. 5, pp. 580-605. http://geodesic.mathdoc.fr/item/AL_2009_48_5_a2/
[1] N. Benton, J. Hughes, E. Moggi, “Monads and effects”, Applied semantics, Advanced lectures Int. summer school, APPSEM 2000 (Caminha, Portugal, Sept. 9–15, 2000), Lect. Notes Comput. Sci., 2395, eds. Gilles Barthe et al., Springer-Verlag, Berlin, 2002, 42–122 | MR | Zbl
[2] B. Cohen, M. Escardó, K. Keimel, “The extended probabilistic powerdomain monad over stably compact spaces”, Theory and applications of models of computation, Proc. Third int. conf., TAMC 2006 (Beijing, China, May 15–20, 2006), Lect. Notes Comput. Sci., 3959, eds. Jin-Yi Cai et al., Springer-Verlag, Berlin, 2006, 566–575 | MR | Zbl
[3] K. Keimel, “The monad of probability measures over compact ordered spaces and its Eilenberg–Moore algebras”, Topology Appl., 156:2 (2008), 227–239 | DOI | MR | Zbl
[4] L. Nachbin, Topology and order, transl. from the Portuguese by L. Bechtolsheim, Van Nostrand Math. Stud., 4, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–New York–London, 1965 ; Reprint of the 1965 edition, Robert E. Kreiger Publ. Co., Huntington, NY, 1976 | MR | MR
[5] D. A. Edwards, “On the existence of probability measures with given marginals”, Ann. Inst. Fourier, 28:4 (1978), 53–78 | MR | Zbl
[6] T. Swirszcz, “Monadic functors and convexity”, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 22 (1974), 39–42 | MR | Zbl
[7] Z. Semadeni, Monads and their Eilenberg–Moore algebras in functional analysis, Queen's Papers Pure Appl. Math., 33, Queen's Univ., Kingston, Ontario, Canada, 1973 | MR | Zbl
[8] J. D. Lawson, “Embeddings of compact convex sets and locally compact cones”, Pac. J. Math., 66 (1976), 443–453 | MR | Zbl
[9] J. D. Lawson, B. Madison, “On congruences and cones”, Math. Z., 120 (1971), 18–24 | DOI | MR | Zbl
[10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Encycl. Math. Appl., 93, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[11] S. Mac Lane, Categories for the working mathematician, 2nd ed., Grad. Texts Math., 5, Springer-Verlag, New York, NY, 1998 | MR
[12] N. Bourbaki, Éléments de mathématique. Fasc. II. Premiere partie. Livre III: Topologie generale. Chap. 1: Structures topologiques. Chap. 2: Structures uniformes, 4iéme ed., Hermann Cie, Paris, 1965 | MR | Zbl
[13] K. Keimel, “Topological cones: functional analysis in a $T_0$-setting”, Semigroup Forum, 77:1 (2008), 109–142 | DOI | MR | Zbl
[14] W. D. Neumann, “On the quasivariety of convex subsets of affine spaces”, Arch. Math., 21 (1970), 11–16 | DOI | MR | Zbl
[15] H. H. Schaefer, Topological vector spaces, Macmillan Ser. Adv. Math. Theor. Phys., The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966 | MR | Zbl
[16] E. M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer-Verlag, 1971 | MR | Zbl
[17] M. Alvarez-Manilla, A. Jung, K. Keimel, “The probabilistic powerdomain for stably compact spaces”, Theor. Comput. Sci., 328:3 (2004), 221–244 | DOI | MR | Zbl