Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2009_48_5_a0, author = {P. E. Alaev and J. Thurber and A. N. Frolov}, title = {Computability on linear orderings enriched with predicates}, journal = {Algebra i logika}, pages = {549--563}, publisher = {mathdoc}, volume = {48}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2009_48_5_a0/} }
P. E. Alaev; J. Thurber; A. N. Frolov. Computability on linear orderings enriched with predicates. Algebra i logika, Tome 48 (2009) no. 5, pp. 549-563. http://geodesic.mathdoc.fr/item/AL_2009_48_5_a0/
[1] R. Downey, C. G. Jockusch, “Every low Boolean algebra is isomorphic to a recursive one”, Proc. Am. Math. Soc., 122:3 (1994), 871–880 | DOI | MR | Zbl
[2] J. J. Thurber, “Every $low_2$ Boolean algebra has a recursive copy”, Proc. Am. Math. Soc., 123:12 (1995), 3859–3866 | DOI | MR | Zbl
[3] J. F. Knight, M. Stob, “Computable Boolean algebras”, J. Symb. Log., 65:4 (2000), 1605–1623 | DOI | MR | Zbl
[4] A. N. Frolov, “$\Delta^0_2$-kopii lineinykh poryadkov”, Algebra i logika, 45:3 (2006), 354–370 | MR | Zbl
[5] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR
[6] R. Watnick, “A generalization of Tennenbaum's theorem on effectively finite recursive linear orderings”, J. Symb. Log., 49:2 (1984), 563–569 | DOI | MR | Zbl
[7] C. J. Ash, C. G. Jr. Jockusch, J. F. Knight, “Jumps of orderings”, Trans. Am. Math. Soc., 319:2 (1990), 573–599 | DOI | MR | Zbl
[8] C. J. Ash, “A construction for recursive linear orderings”, J. Symb. Log., 56:2 (1991), 673–683 | DOI | MR | Zbl