Computability on linear orderings enriched with predicates
Algebra i logika, Tome 48 (2009) no. 5, pp. 549-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a quasidiscrete linear ordering. We specify some conditions for the existence of a computable presentation for $L$ or for the structure $(L,\operatorname{adj})$, where $\operatorname{adj}(x,y)$ is a predicate distinguishing adjacent elements.
Keywords: computability, quasidiscrete linear ordering.
@article{AL_2009_48_5_a0,
     author = {P. E. Alaev and J. Thurber and A. N. Frolov},
     title = {Computability on linear orderings enriched with predicates},
     journal = {Algebra i logika},
     pages = {549--563},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_5_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
AU  - J. Thurber
AU  - A. N. Frolov
TI  - Computability on linear orderings enriched with predicates
JO  - Algebra i logika
PY  - 2009
SP  - 549
EP  - 563
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_5_a0/
LA  - ru
ID  - AL_2009_48_5_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%A J. Thurber
%A A. N. Frolov
%T Computability on linear orderings enriched with predicates
%J Algebra i logika
%D 2009
%P 549-563
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_5_a0/
%G ru
%F AL_2009_48_5_a0
P. E. Alaev; J. Thurber; A. N. Frolov. Computability on linear orderings enriched with predicates. Algebra i logika, Tome 48 (2009) no. 5, pp. 549-563. http://geodesic.mathdoc.fr/item/AL_2009_48_5_a0/

[1] R. Downey, C. G. Jockusch, “Every low Boolean algebra is isomorphic to a recursive one”, Proc. Am. Math. Soc., 122:3 (1994), 871–880 | DOI | MR | Zbl

[2] J. J. Thurber, “Every $low_2$ Boolean algebra has a recursive copy”, Proc. Am. Math. Soc., 123:12 (1995), 3859–3866 | DOI | MR | Zbl

[3] J. F. Knight, M. Stob, “Computable Boolean algebras”, J. Symb. Log., 65:4 (2000), 1605–1623 | DOI | MR | Zbl

[4] A. N. Frolov, “$\Delta^0_2$-kopii lineinykh poryadkov”, Algebra i logika, 45:3 (2006), 354–370 | MR | Zbl

[5] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR

[6] R. Watnick, “A generalization of Tennenbaum's theorem on effectively finite recursive linear orderings”, J. Symb. Log., 49:2 (1984), 563–569 | DOI | MR | Zbl

[7] C. J. Ash, C. G. Jr. Jockusch, J. F. Knight, “Jumps of orderings”, Trans. Am. Math. Soc., 319:2 (1990), 573–599 | DOI | MR | Zbl

[8] C. J. Ash, “A construction for recursive linear orderings”, J. Symb. Log., 56:2 (1991), 673–683 | DOI | MR | Zbl