Lattices isomorphic to subsemilattice lattices of finite trees
Algebra i logika, Tome 48 (2009) no. 4, pp. 471-494.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a syntactic description of the class of lattices isomorphic to subsemilattice lattices of finite trees as well as of the class of lattices isomorphic to subsemilattice lattices of finite $n$-ary trees for any positive $n$.
Keywords: lattice, subsemilattice, finite tree.
@article{AL_2009_48_4_a2,
     author = {M. V. Semenova and K. M. Skorobogatov},
     title = {Lattices isomorphic to subsemilattice lattices of finite trees},
     journal = {Algebra i logika},
     pages = {471--494},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_4_a2/}
}
TY  - JOUR
AU  - M. V. Semenova
AU  - K. M. Skorobogatov
TI  - Lattices isomorphic to subsemilattice lattices of finite trees
JO  - Algebra i logika
PY  - 2009
SP  - 471
EP  - 494
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_4_a2/
LA  - ru
ID  - AL_2009_48_4_a2
ER  - 
%0 Journal Article
%A M. V. Semenova
%A K. M. Skorobogatov
%T Lattices isomorphic to subsemilattice lattices of finite trees
%J Algebra i logika
%D 2009
%P 471-494
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_4_a2/
%G ru
%F AL_2009_48_4_a2
M. V. Semenova; K. M. Skorobogatov. Lattices isomorphic to subsemilattice lattices of finite trees. Algebra i logika, Tome 48 (2009) no. 4, pp. 471-494. http://geodesic.mathdoc.fr/item/AL_2009_48_4_a2/

[1] L. N. Shevrin, A. Ya. Ovsyannikov, Semigroups and their subsemigroup lattices, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[2] K. V. Adaricheva, “Stroenie reshetok podpolureshetok”, Algebra i logika, 30:4 (1991), 385–404 | MR | Zbl

[3] V. A. Gorbunov, V. I. Tumanov, “Ob odnom klasse reshëtok kvazimnogoobrazii”, Algebra i logika, 19:1 (1980), 59–80 | MR | Zbl

[4] M. V. Semënova, “O reshëtkakh, vlozhimykh v reshëtki podpolugrupp. V. Derevya”, Sib. matem. zh., 48:4 (2007), 894–913 | MR | Zbl

[5] L. N. Shevrin, “Osnovnye voprosy teorii proektirovanii polustruktur”, Matem. sb., 66(108):4 (1965), 568–597 | MR | Zbl

[6] F. Wehrung, “Sublattices of complete lattices with continuity conditions”, Algebra Univers., 53:2/3 (2005), 149–173 | DOI | MR | Zbl

[7] R. N. McKenzie, “Equational bases and non-modular lattice varieties”, Trans. Am. Math. Soc., 174:1 (1972), 1–43 | DOI | MR

[8] R. Freese, J. Ježek, J. B. Nation, Free lattices, Math. Surv. Monogr., 42, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl

[9] A. P. Huhn, “Schwach distributive Verbände. I”, Acta Sci. Math. (Szeged), 33 (1972), 297–305 | MR | Zbl