Automorphisms of elementary adjoint Chevalley groups of types $A_l$, $D_l$, and $E_l$ over local rings with~1/2
Algebra i logika, Tome 48 (2009) no. 4, pp. 443-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every automorphism of an elementary adjoint Chevalley group of type $A_l$, $D_l$, or $E_l$ over a local commutative ring with 1/2 is a composition of a ring automorphism and conjugation by some matrix from the normalizer of that Chevalley group in $GL(V)$ ($V$ is an adjoint representation space).
Mots-clés : automorphism
Keywords: elementary adjoint Chevalley group, local commutative ring.
@article{AL_2009_48_4_a1,
     author = {E. I. Bunina},
     title = {Automorphisms of elementary adjoint {Chevalley} groups of types $A_l$, $D_l$, and $E_l$ over local rings with~1/2},
     journal = {Algebra i logika},
     pages = {443--470},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_4_a1/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Automorphisms of elementary adjoint Chevalley groups of types $A_l$, $D_l$, and $E_l$ over local rings with~1/2
JO  - Algebra i logika
PY  - 2009
SP  - 443
EP  - 470
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_4_a1/
LA  - ru
ID  - AL_2009_48_4_a1
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Automorphisms of elementary adjoint Chevalley groups of types $A_l$, $D_l$, and $E_l$ over local rings with~1/2
%J Algebra i logika
%D 2009
%P 443-470
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_4_a1/
%G ru
%F AL_2009_48_4_a1
E. I. Bunina. Automorphisms of elementary adjoint Chevalley groups of types $A_l$, $D_l$, and $E_l$ over local rings with~1/2. Algebra i logika, Tome 48 (2009) no. 4, pp. 443-470. http://geodesic.mathdoc.fr/item/AL_2009_48_4_a1/

[1] R. Steinberg, “Automorphisms of finite linear groups”, Can. J. Math., 12 (1960), 606–615 | MR | Zbl

[2] J. E. Humphreys, “On the automorphisms of infinite Chevalley groups”, Can. J. Math., 21 (1969), 908–911 | MR | Zbl

[3] A. Borel, J. Tits, “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. Math. (2), 97 (1973), 499–571 | DOI | MR | Zbl

[4] R. W. Carter, Y. Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155:1 (1993), 44–94 | DOI | MR | Zbl

[5] Yu Chen, “Isomorphic Chevalley groups over integral domains”, Rend. Semin. Mat. univ. Padova, 92 (1994), 231–237 | MR | Zbl

[6] Yu Chen, “On representations of elementary subgroups of Chevalley groups over algebras”, Proc. Am. Math. Soc., 123:8 (1995), 2357–2361 | DOI | MR | Zbl

[7] Yu Chen, “Automorphisms of simple Chevalley groups over $\mathbb Q$-algebras”, Tôhoku Math. J. II Ser., 47:1 (1995), 81–97 | DOI | MR | Zbl

[8] Yu Chen, “Isomorphisms of adjoint Chevalley groups over integral domains”, Trans. Am. Math. Soc., 348:2 (1996), 521–541 | DOI | MR | Zbl

[9] Yu Chen, “Isomorphisms of Chevalley groups over algebras”, J. Algebra, 226:2 (2000), 719–741 | DOI | MR | Zbl

[10] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[11] V. M. Petechuk, “Avtomorfizmy grupp $\mathrm{SL}_n$, $\mathrm{GL}_n$ nad nekotorymi lokalnymi koltsami”, Matem. zametki, 28:2 (1980), 187–204 | MR | Zbl

[12] W. C. Waterhouse, Introduction to affine group schemes, Grad. Texts Math., 66, Springer-Verlag, New York et al., 1979 | MR | Zbl

[13] V. M. Petechuk, “Avtomorfizmy matrichnykh grupp nad kommutativnymi koltsami”, Matem. sb., 117(159):4 (1982), 534–547 | MR | Zbl

[14] Fuan Li, Zunxian Li, “Automorphisms of $\mathrm{SL}_3(R)$, $\mathrm{GL}_3(R)$”, Contemp. Math., 82 (1984), 47–52

[15] I. Z. Golubchik, A. V. Mikhalev, “Izomorfizmy unitarnykh grupp nad assotsiativnymi koltsami”, Zap. nauch. semin. LOMI AN SSSR, 132, 1983, 97–109 | MR

[16] J. E. Humphreys, Introduction to Lie algebras and representation theory, 2nd ed., Grad. Texts Math., 9, Springer-Verlag, New York et al., 1978 | MR | Zbl

[17] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Chapitres IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des réflexions. Systèmes de racines, Actualites Sci. Industr., 1337, Hermann, Paris, 1968 | MR | Zbl

[18] R. Steinberg, Lectures on Chevalley groups, Yale Univ., 1967 | MR

[19] R. W. Carter, Simple groups of Lie type, Reprint of the 1972 orig., Wiley Classics Lib., John Wiley Sons, New York, 1989 | MR | Zbl

[20] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[21] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J. II Ser., 21:3 (1969), 474–494 | DOI | MR | Zbl

[22] B. R. McDonald, “Automorphisms of $\mathrm{GL}_n(R)$”, Trans. Am. Math. Soc., 215 (1976), 145–159 | DOI | MR | Zbl