Coinvariants for a coadjoint action of quantum matrices
Algebra i logika, Tome 48 (2009) no. 4, pp. 425-442
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be a (algebraically closed) field. A morphism $A\mapsto g^{-1}Ag$, where $A\in M(n)$ and $g\in GL(n)$, defines an action of a general linear group $GL(n)$ on an $n\times n$-matrix space $M(n)$, referred to as an adjoint action. In correspondence with the adjoint action is the coaction $\alpha\colon K[M(n)]\to K[M(n)]\otimes K[GL(n)]$ of a Hopf algebra $K[GL(n)]$ on a coordinate algebra $K[M(n)]$ of an $n\times n$-matrix space, dual to the conjugation morphism. Such is called an adjoint coaction. We give coinvariants of an adjoint coaction for the case where $K$ is a field of arbitrary characteristic and one of the following conditions is satisfied: (1) $q$ is not a root of unity; (2) $\operatorname{char}K=0$ and $q=\pm1$; (3) $q$ is a primitive root of unity of odd degree. Also it is shown that under the conditions specified, the category of rational $GL_q\times GL_q$-modules is a highest weight category.
Keywords:
field
Mots-clés : adjoint action, adjoint coaction, rational module.
Mots-clés : adjoint action, adjoint coaction, rational module.
@article{AL_2009_48_4_a0,
author = {V. V. Antonov and A. N. Zubkov},
title = {Coinvariants for a~coadjoint action of quantum matrices},
journal = {Algebra i logika},
pages = {425--442},
year = {2009},
volume = {48},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2009_48_4_a0/}
}
V. V. Antonov; A. N. Zubkov. Coinvariants for a coadjoint action of quantum matrices. Algebra i logika, Tome 48 (2009) no. 4, pp. 425-442. http://geodesic.mathdoc.fr/item/AL_2009_48_4_a0/
[1] M. Domokos, T. H. Lenagan, “Conjugation coinvariants of quantum matrices”, Bull. London Math. Soc., 35:1 (2003), 117–127 | DOI | MR | Zbl
[2] B. Parshall, Jian-Pan Wang, Quantum linear groups, Mem. Am. Math. Soc., 439(89), Am. Math. Soc., Providence, RI, 1991 | MR | Zbl
[3] J. C. Jantzen, Representations of algebraic groups, Pure Applied Math., 131, Academic Press, Inc. (Harcourt Brace Jovanovich, Publ.), Boston etc., 1987 | MR | Zbl
[4] E. Cline, B. Parshall, L. Scott, “Finite dimensional algebras and highest weight categories”, J. Reine Angew. Math., 391 (1988), 85–99 | MR | Zbl