Normal relatively convex subgroups of solvable orderable groups
Algebra i logika, Tome 48 (2009) no. 3, pp. 291-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

Orderable solvable groups in which every relatively convex subgroup is normal are studied. If such a class is subgroup closed than it is precisely the class of solvable orderable groups which are locally of finite (Mal'tsev) rank. A criterion for an orderable metabelian group to have every relatively convex subgroup normal is given. Examples of an orderable solvable group $G$ of length three with periodic $G/G'$ and of an orderable solvable group of length four with only one proper normal relatively convex subgroup are constructed.
Keywords: ordered group, convex subgroup.
Mots-clés : solvable group
@article{AL_2009_48_3_a0,
     author = {V. V. Bludov and V. M. Kopytov and A. H. Rhemtulla},
     title = {Normal relatively convex subgroups of solvable orderable groups},
     journal = {Algebra i logika},
     pages = {291--308},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/}
}
TY  - JOUR
AU  - V. V. Bludov
AU  - V. M. Kopytov
AU  - A. H. Rhemtulla
TI  - Normal relatively convex subgroups of solvable orderable groups
JO  - Algebra i logika
PY  - 2009
SP  - 291
EP  - 308
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/
LA  - ru
ID  - AL_2009_48_3_a0
ER  - 
%0 Journal Article
%A V. V. Bludov
%A V. M. Kopytov
%A A. H. Rhemtulla
%T Normal relatively convex subgroups of solvable orderable groups
%J Algebra i logika
%D 2009
%P 291-308
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/
%G ru
%F AL_2009_48_3_a0
V. V. Bludov; V. M. Kopytov; A. H. Rhemtulla. Normal relatively convex subgroups of solvable orderable groups. Algebra i logika, Tome 48 (2009) no. 3, pp. 291-308. http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/

[1] V. M. Kopytov, N. Ya. Medvedev, Pravouporyadochennye gruppy, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1996 | MR | Zbl

[2] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 16-e izd., In-t matem. SO RAN, Novosibirsk, 2006; http://www.math.nsc.ru/~alglog

[3] A. Rhemtulla, H. Smith, “On solvable $R^*$ groups of finite rank”, Com. Alg., 31:7 (2003), 3287–3293 | DOI | MR | Zbl

[4] A. I. Kokorin, V. M. Kopytov, Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl

[5] R. B. Mura, A. H. Rhemtulla, Orderable groups, Lect. Notes Pure Appl. Math., 27, Marcel Dekker, Inc., New York–Basel, 1977 | MR | Zbl

[6] P. H. Kropholler, “On finitely generated soluble groups with no large wreath product sections”, Proc. London Math. Soc. III Ser., 49:1 (1984), 155–169 | DOI | MR | Zbl

[7] Yu. M. Gorchakov, “Primer $G$-periodicheskoi gruppy bez krucheniya”, Algebra i logika, 6:3 (1967), 5–7 | MR | Zbl

[8] D. M. Smirnov, “Pravouporyadochennye gruppy”, Algebra i logika, 5:6 (1966), 41–59 | MR | Zbl

[9] A. I. Kokorin, “$\Gamma$-douporyadochivaemye i otnositelno vypuklye podgruppy uporyadochennykh grupp”, Sib. matem. zh., 7:3 (1966), 713–717 | MR | Zbl

[10] N. Ya. Medvedev, “Razreshimye gruppy i mnogoobraziya $l$-grupp”, Algebra i logika, 44:3 (2005), 355–367 | MR | Zbl

[11] A. M. V. Glass, N. Ya. Medvedev, “Unilateralnye $o$-gruppy”, Algebra i logika, 45:1 (2006), 20–27 | MR | Zbl