Normal relatively convex subgroups of solvable orderable groups
Algebra i logika, Tome 48 (2009) no. 3, pp. 291-308

Voir la notice de l'article provenant de la source Math-Net.Ru

Orderable solvable groups in which every relatively convex subgroup is normal are studied. If such a class is subgroup closed than it is precisely the class of solvable orderable groups which are locally of finite (Mal'tsev) rank. A criterion for an orderable metabelian group to have every relatively convex subgroup normal is given. Examples of an orderable solvable group $G$ of length three with periodic $G/G'$ and of an orderable solvable group of length four with only one proper normal relatively convex subgroup are constructed.
Keywords: ordered group, convex subgroup.
Mots-clés : solvable group
@article{AL_2009_48_3_a0,
     author = {V. V. Bludov and V. M. Kopytov and A. H. Rhemtulla},
     title = {Normal relatively convex subgroups of solvable orderable groups},
     journal = {Algebra i logika},
     pages = {291--308},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/}
}
TY  - JOUR
AU  - V. V. Bludov
AU  - V. M. Kopytov
AU  - A. H. Rhemtulla
TI  - Normal relatively convex subgroups of solvable orderable groups
JO  - Algebra i logika
PY  - 2009
SP  - 291
EP  - 308
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/
LA  - ru
ID  - AL_2009_48_3_a0
ER  - 
%0 Journal Article
%A V. V. Bludov
%A V. M. Kopytov
%A A. H. Rhemtulla
%T Normal relatively convex subgroups of solvable orderable groups
%J Algebra i logika
%D 2009
%P 291-308
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/
%G ru
%F AL_2009_48_3_a0
V. V. Bludov; V. M. Kopytov; A. H. Rhemtulla. Normal relatively convex subgroups of solvable orderable groups. Algebra i logika, Tome 48 (2009) no. 3, pp. 291-308. http://geodesic.mathdoc.fr/item/AL_2009_48_3_a0/