Bases of admissible rules for $K$-saturated logics
Algebra i logika, Tome 47 (2008) no. 6, pp. 750-761
Cet article a éte moissonné depuis la source Math-Net.Ru
Admissible inference rules for table modal and superintuitionistic logics are investigated. $K$-saturated logics are defined semantically. Such logics are proved to have finite bases for admissible inference rules in finitely many variables.
Keywords:
admissible inference rules, basis for admissible inference rules, table modal logic, superintuitionistic logic.
@article{AL_2008_47_6_a4,
author = {V. V. Rimatskii},
title = {Bases of admissible rules for $K$-saturated logics},
journal = {Algebra i logika},
pages = {750--761},
year = {2008},
volume = {47},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2008_47_6_a4/}
}
V. V. Rimatskii. Bases of admissible rules for $K$-saturated logics. Algebra i logika, Tome 47 (2008) no. 6, pp. 750-761. http://geodesic.mathdoc.fr/item/AL_2008_47_6_a4/
[1] V. V. Rybakov, Admissibility of logical inference rules, Stud. Log. Found. Math., 136, Elsevier Sci. Publ. B. V., Amsterdam, 1997 | MR | Zbl
[2] V. V. Rimatskii, “Bazisy dopustimykh pravil vyvoda tablichnykh modalnykh logik glubiny 2”, Algebra i logika, 35:5 (1996), 612–622 | MR
[3] V. V. Rimatskiy, “Finite bases of admissible inference rules for modal logics of width 2”, Bull. Sect. Log. Univ. Lódź Dep. Log., 26:3 (1997), 126–134 | MR | Zbl