Temporal logic of linearly ordered $\alpha$-spaces
Algebra i logika, Tome 47 (2008) no. 6, pp. 723-749.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the language of temporal logic, we construct a decidable calculus $L^*\alpha$ and prove that the calculus is complete w.r.t. the class of all strictly linearly ordered $\alpha$-frames.
Keywords: temporal logic, linearly ordered $\alpha$-space.
@article{AL_2008_47_6_a3,
     author = {V. F. Murzina},
     title = {Temporal logic of linearly ordered $\alpha$-spaces},
     journal = {Algebra i logika},
     pages = {723--749},
     publisher = {mathdoc},
     volume = {47},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_6_a3/}
}
TY  - JOUR
AU  - V. F. Murzina
TI  - Temporal logic of linearly ordered $\alpha$-spaces
JO  - Algebra i logika
PY  - 2008
SP  - 723
EP  - 749
VL  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_6_a3/
LA  - ru
ID  - AL_2008_47_6_a3
ER  - 
%0 Journal Article
%A V. F. Murzina
%T Temporal logic of linearly ordered $\alpha$-spaces
%J Algebra i logika
%D 2008
%P 723-749
%V 47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_6_a3/
%G ru
%F AL_2008_47_6_a3
V. F. Murzina. Temporal logic of linearly ordered $\alpha$-spaces. Algebra i logika, Tome 47 (2008) no. 6, pp. 723-749. http://geodesic.mathdoc.fr/item/AL_2008_47_6_a3/

[1] V. F. Murzina, “Modalnaya logika na osnove lineino uporyadochennykh $f$-prostranstv”, Algebra i logika, 42:3 (2003), 320–337 | MR | Zbl

[2] V. F. Murzina, “Vremennye logiki, polnye otnositelno strogo lineino uporyadochennykh $f$-modelei”, Vestnik NGU, 3:1 (2003), 61–82 | Zbl

[3] V. F. Murzina, “Modalnaya logika, polnaya otnositelno strogo lineino uporyadochennykh $A$-modelei”, Algebra i logika, 44:5 (2005), 560–582 | MR | Zbl

[4] Yu. L. Ershov, “Teoriya $A$-prostranstv”, Algebra i logika, 12:4 (1973), 369–418 | MR

[5] Yu. L. Ershov, “Theory of domains and nearby”, Intern. conf. formal methods progr. their appl. (Novosibirsk, Russia), Lec. Not. Comp. Sci., 735, Springer-Verlag, Berlin etc., 1993, 1–7 | MR

[6] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR | Zbl